Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Certain medications can alter the number and function of white blood cells.
Medications that can cause leukopenia include clozapine, an antipsychotic medication with a rare adverse effect leading to the total absence of all granulocytes (neutrophils, basophils, eosinophils). The antidepressant and smoking addiction treatment drug bupropion HCl (Wellbutrin) can also cause leukopenia with long-term use. Minocycline, a commonly prescribed antibiotic, is another drug known to cause leukopenia. There are also reports of leukopenia caused by divalproex sodium or valproic acid (Depakote), a drug used for epilepsy (seizures), mania (with bipolar disorder) and migraine.
The anticonvulsant drug, lamotrigine, has been associated with a decrease in white blood cell count.
The FDA monograph for metronidazole states that this medication can also cause leukopenia, and the prescriber information suggests a complete blood count, including differential cell count, before and after, in particular, high-dose therapy.
Immunosuppressive drugs, such as sirolimus, mycophenolate mofetil, tacrolimus, ciclosporin, leflunomide and TNF inhibitors, have leukopenia as a known complication. Interferons used to treat multiple sclerosis, such as interferon beta-1a and interferon beta-1b, can also cause leukopenia.
Chemotherapy targets cells that grow rapidly, such as tumors, but can also affect white blood cells, because they are characterized by bone marrow as rapid growing. A common side effect of cancer treatment is neutropenia, the lowering of neutrophils (a specific type of white blood cell).
Decreased white blood cell count may be present in cases of arsenic toxicity.
In patients that have no symptoms of infection, management consists of close monitoring with serial blood counts, withdrawal of the offending agent (e.g., medication), and general advice on the significance of fever.
Transfusion of granulocytes would have been a solution to the problem. However, granulocytes live only ~10 hours in the circulation (for days in spleen or other tissue), which gives a very short-lasting effect. In addition, there are many complications of such a procedure.
Below are blood reference ranges for various types leucocytes/WBCs. The 97.5 percentile (right limits in intervals in image, showing 95% prediction intervals) is a common limit for defining leukocytosis.
Since leukostais/ hyperleukostasis is associated with leukemia, preventative treatments are put into action upon diagnosis.
Patients with hyerleukocystois associated with leukemia are always considered candidates for tumor lysis syndrome prophylaxis in addition to aggressive intravenous hydration with allopurinol or rasburicase to decrease serum uric acid levels.
Leukocytosis is very common in acutely ill patients. It occurs in response to a wide variety of conditions, including viral, bacterial, fungal, or parasitic infection, cancer, hemorrhage, and exposure to certain medications or chemicals including steroids.
For lung diseases such as pneumonia and tuberculosis, WBC count is very important for the diagnosis of the disease, as leukocytosis is usually present.
The mechanism that causes leukocytosis can be of several forms: an increased release of leukocytes from bone marrow storage pools, decreased margination of leukocytes onto vessel walls, decreased extravasation of leukocytes from the vessels into tissues, or an increase in number of precursor cells in the marrow.
Certain medications, including corticosteroids, lithium and beta agonists, may cause leukocytosis.
A large number of drugs
have been associated with agranulocytosis, including antiepileptics (such as carbamazepine and valproate), antithyroid drugs (carbimazole, methimazole, and propylthiouracil), antibiotics (penicillin, chloramphenicol and co-trimoxazole), ACE inhibitors (benazepril), cytotoxic drugs, gold, NSAIDs (indomethacin, naproxen, phenylbutazone, metamizole), mebendazole, allopurinol the antidepressants mianserin and mirtazapine, and some antipsychotics (the atypical antipsychotic clozapine in particular). Clozapine users in the United States, Australia, Canada, and the UK must be nationally registered for monitoring of low WBC and absolute neutrophil counts (ANC).
Although the reaction is generally idiosyncratic rather than proportional, experts recommend that patients using these drugs be told about the symptoms of agranulocytosis-related infection, such as a sore throat and a fever.
The Centers for Disease Control traced outbreaks of agranulocytosis among cocaine users, in the US and Canada between March 2008 and November 2009, to the presence of levamisole in the drug supply. The Drug Enforcement Administration reported that, as of February 2010, 71% of seized cocaine lots coming into the US contained levamisole as a cutting agent. Levamisole is an antihelminthic (i.e. deworming) drug used in animals. The reason for adding levamisole to cocaine is unknown, although it can be due to their similar melting points and solubilities.
Low white cell count may be due to acute viral infections, such as a cold or influenza. It has been associated with chemotherapy, radiation therapy, myelofibrosis, aplastic anemia (failure of white cell, red cell and platelet production), stem cell transplant, bone marrow transplant, HIV, AIDS, and steroid use.
Other causes of low white blood cell count include systemic lupus erythematosus, Hodgkin's lymphoma, some types of cancer, typhoid, malaria, tuberculosis, dengue, rickettsial infections, enlargement of the spleen, folate deficiencies, psittacosis, sepsis, Sjögren's syndrome and Lyme disease. It has also been shown to be caused by deficiency in certain minerals, such as copper and zinc.
Pseudoleukopenia can develop upon the onset of infection. The leukocytes (predominately neutrophils, responding to injury first) start migrating toward the site of infection, where they can be scanned. Their migration causes bone marrow to produce more WBCs to combat infection as well as to restore the leukocytes in circulation, but as the blood sample is taken upon the onset of infection, it contains low amount of WBCs, which is why it is termed "pseudoleukopenia".
The goals of therapy are to control symptoms, improve quality of life, improve overall survival, and decrease progression to AML.
The IPSS scoring system can help triage patients for more aggressive treatment (i.e. bone marrow transplant) as well as help determine the best timing of this therapy. Supportive care with blood products and hematopoietic growth factors (e.g. erythropoietin) is the mainstay of therapy. The regulatory environment for the use of erythropoietins is evolving, according to a recent US Medicare National coverage determination. No comment on the use of hematopoeitic growth factors for MDS was made in that document though.
Three agents have been approved by the FDA for the treatment of MDS:
1. 5-azacytidine: 21-month median survival
2. Decitabine: Complete response rate reported as high as 43%. A phase I study has shown efficacy in AML when decitabine is combined with valproic acid.
3. Lenalidomide: Effective in reducing red blood cell transfusion requirement in patients with the chromosome 5q deletion subtype of MDS
Chemotherapy with the hypomethylating agents 5-azacytidine and decitabine has been shown to decrease blood transfusion requirements and to retard the progression of MDS to AML. Lenalidomide was approved by the FDA in December 2005 only for use in the 5q- syndrome. In the United States, treatment of MDS with lenalidomide costs about $9,200 per month.
Stem cell transplantation, particularly in younger (i.e. less than 40 years of age) and more severely affected patients, offers the potential for curative therapy. Success of bone marrow transplantation has been found to correlate with severity of MDS as determined by the IPSS score, with patients having a more favorable IPSS score tending to have a more favorable outcome with transplantation.
Treatment includes utilization of prophylactic methods in the event that the patient has been diagnosed with hyperleukocystosis. This is usually in combination with other treatments which are dependent on the type of leukemia. Specific treatments include lysis syndrome treatment in addition to aggressive intravenous hydration with allopurinol or rasburicase to decrease serum uric acid levels.
Since a primary cause of leukocystatis is caused by leukemia, surgery is often a treatment and dependent on tumor size and location.
Hematopoietic cell transplants are critical to correct leukostasis and leukemia.
Cytoreduction is also a critical course of treatment in order to rapidly decrease white blood cell counts. Twenty to forty percent of patients diagnosed with hyperkeuckocytosis die within the first week of symptom presentation. Patients with the best outcome have none or limited symptoms of respiratory or neurological distress. An accumulation of these symptoms leads to decreased levels of statistical survival compared to patients diagnosed with asymptomatic hyperleukocytosis alone.
Cytoreduction methods include chemotherapy, utilizing the drug hydroxyurea ( Hydroxyurea is usually used in asymptomatic hyperleukocytosis), and the less common leukapheresis procedure. This procedure is often utilized for asymptomatic hyperleuckocytosis patients who have induction chemotherapy postponed for patient specific factors.
Variants of Chemotherapy, including induction chemotherapy, are used to treat both elevated white blood cells counts while simultaneously targeting leukemia cells in bone marrow.
Prognosis of patients suffering from hyperleukocytosis is dependent on the cause and type of leukemia the patient has. Patients diagnosed with asymptomatic hyerpleukocytosis have significantly better survival rates than symptomatic hyperleuckocytosis (leukostasis). Preventative measures and contentious monitoring of patients diagnosed with leukemia is critical in receiving treatment as early as possible to prevent and treat hyperleuckocytosis.
Iron overload can develop in MDS as a result of the RBC transfusions which are a major part of the supportive care for anemic MDS patients. Although the specific therapies patients receive may alleviate the RBC transfusion need in some cases, many MDS patients may not respond to these treatments, thus may develop iron overload from repeated RBC transfusions.
Patients requiring relatively large numbers of RBC transfusions can experience the adverse effect of chronic iron overload on their liver, heart, and endocrine functions. The resulting organ dysfunction from transfusional iron overload might be a contributor to increased illness and death in early-stage MDS.
For patients requiring many RBC transfusions, serum ferritin levels, number of RBC transfusions received, and associated organ dysfunction (heart, liver, and pancreas) should be monitored to determine iron levels. Monitoring serum ferritin may also be useful, aiming to decrease ferritin levels to .
Currently, two iron chelators are available in the US, deferoxamine for intravenous use and deferasirox for oral use. These options now provide potentially useful drugs for treating this iron overload problem. A third chelating agent is available in Europe, deferiprone for oral use, but not available in the US.
Clinical trials in the MDS are ongoing with iron chelating agents to address the question of whether iron chelation alters the natural history of patients with MDS who are transfusion dependent. Reversal of some of the consequences of iron overload in MDS by iron chelation therapy have been shown.
Both the MDS Foundation and the National Comprehensive Cancer Network MDS Guidelines Panel have recommended that chelation therapy be considered to decrease iron overload in selected MDS patients. Evidence also suggests a potential value exists to iron chelation in patients who will undergo a stem cell transplant.
Although deferasirox is generally well tolerated (other than episodes of gastrointestinal distress and kidney dysfunction in some patients), recently a safety warning by the FDA and Novartis was added to deferasirox treatment guidelines. Following postmarketing use of deferasirox, rare cases of acute kidney failure or liver failure occurred, some resulting in death. Due to this, patients should be closely monitored on deferasirox therapy prior to the start of therapy and regularly thereafter.
The treatment of CMML remains challenging due to the lack of clinical trials investigating the disease as its own clinical entity. It is often grouped with MDS in clinical trials, and for this reason the treatment of CMML is very similar to that of MDS. Most cases are dealt with as supportive rather than curative because most therapies do not effectively increase survival. Indications for treatment include the presence of B symptoms, symptomatic organ involvement, increasing blood counts, hyperleukocytosis, leukostasis and/or worsening cytopaenias.
Blood transfusions and EPO administration are used to raise haemoglobin levels in cases with anaemia.
Azacitidine is a drug approved by the US Food & Drug Administration (FDA) for the treatment of CMML and by the European Medicines Agency for high risk non-proliferative CMML with 10-19% marrow blasts. It is a cytidine analogue that causes hypomethylation of DNA by inhibition of DNA methyltransferase. Decitabine is a similar drug to azacitidine and is approved by the FDA for treatments of all subtypes of MDS, including CMML. Hydroxyurea is a chemotherapy that is used in the myeloproliferative form of CMML to reduce cell numbers.
Haematopoietic stem cell transplant remains the only curative treatment for CMML. However, due to the late age of onset and presence of other illnesses, this form of treatment is often not possible.
Systemic corticosteroids such as (prednisone) can produce rapid improvement and are the “gold standard” for treatment. The temperature, white blood cell count, and eruption improve within 72 hours. The skin lesions clear within 3 to 9 days. Abnormal laboratory values rapidly return to normal. There are, however, frequent recurrences. Corticosteroids are tapered within 2 to 6 weeks to zero.
Resolution of the eruption is occasionally followed by milia and scarring. The disease clears spontaneously in some patients. Topical and/or intralesional corticosteroids may be effective as either monotherapy or adjuvant therapy.
Oral potassium iodide or colchicine may induce rapid resolution.
Patients who have a potential systemic infection or in whom corticosteroids are contraindicated can use these agents as a first-line therapy.
In one study, indomethacin, 150 mg per day, was given for the first week, and 100 mg per day was given for 2 additional weeks. Seventeen of 18 patients had a good initial response; fever and arthralgias were markedly attenuated within 48 hours, and eruptions cleared between 7 and 14 days.
Patients whose cutaneous lesions continued to develop were successfully treated with prednisone (1 mg/kg per day). No patient had a relapse after discontinuation of indomethacin.
Other alternatives to corticosteroid treatment include dapsone, doxycycline, clofazimine, and cyclosporine. All of these drugs influence migration and other functions of neutrophils.
Fulminant infection from meningococci bacteria in the bloodstream is a medical emergency and requires emergent treatment with adequate antibiotics. Benzylpenicillin was once the drug of choice with chloramphenicol as a good alternative in allergic patients. Ceftriaxone is an antibiotic commonly employed today. Hydrocortisone can sometimes reverse the adrenal insufficiency. Plastic surgery and tissue grafting are sometimes needed to treat tissue necrosis resulting from the infection.
Some evidence supports the potential therapeutic utility of histone deacetylase inhibitors such as valproic acid or vorinostat in treating APL. According to one study, a cinnamon extract has effect on the apoptotic process in acute myeloid leukemia HL-60 cells.
The second stage features the reabsorption of the initially extravasated fluid and albumin from the tissues, and it usually lasts 1 to 2 days. Intravascular fluid overload leads to polyuria and can cause flash pulmonary edema and cardiac arrest, with possibly fatal consequences. Death from SCLS typically occurs during this recruitment phase because of pulmonary edema arising from excessive intravenous fluid administration during the earlier leak phase. The severity of the problem depends on to the quantity of fluid supplied in the initial phase, the damage that may have been sustained by the kidneys, and the promptness with which diuretics are administered to help the patient discharge the accumulated fluids quickly. A recent study of 59 acute episodes occurring in 37 hospitalized SCLS patients concluded that high-volume fluid therapy was independently associated with poorer clinical outcomes, and that the main complications of SCLS episodes were recovery-phase pulmonary edema (24%), cardiac arrhythmia (24%), compartment syndrome (20%), and acquired infections (19%).
The prevention of episodes of SCLS has involved two approaches. The first has long been identified with the Mayo Clinic, and it recommended treatment with beta agonists such as terbutaline, phosphodiesterase-inhibitor theophylline, and leukotriene-receptor antagonists montelukast sodium.
The rationale for use of these drugs was their ability to increase intracellular cyclic AMP (adenosine monophosphate) levels, which might counteract inflammatory signaling pathways that induce endothelial permeability. It was the standard of care until the early 2000s, but was sidelined afterwards because patients frequently experienced renewed episodes of SCLS, and because these drugs were poorly tolerated due to their unpleasant side effects.
The second, more recent approach pioneered in France during the last decade (early 2000s) involves monthly intravenous infusions of immunoglobulins (IVIG), with an initial dose of 2 gr/kg/month of body weight, which has proven very successful as per abundant case-report evidence from around the world.
IVIG has long been used for the treatment of autoimmune and MGUS-associated syndromes, because of its potential immunomodulatory and anticytokine properties. The precise mechanism of action of IVIG in patients with SCLS is unknown, but it is likely that it neutralizes their proinflammatory cytokines that provoke endothelial dysfunction. A recent review of clinical experience with 69 mostly European SCLS patients found that preventive treatment with IVIG was the strongest factor associated with their survival, such that an IVIG therapy should be the first-line preventive agent for SCLS patients. According to a recent NIH survey of patient experience, IVIG prophylaxis is associated with a dramatic reduction in the occurrence of SCLS episodes in most patients, with minimal side effects, such that it may be considered as frontline therapy for those with a clear-cut diagnosis of SCLS and a history of recurrent episodes.
Neutrophilia (also called neutrophil leukocytosis or occasionally neutrocytosis) is leukocytosis of neutrophils, that is, a high number of neutrophil granulocytes in the blood.
Arsenic trioxide (AsO) is currently being evaluated for treatment of relapsed / refractory disease. Remission with arsenic trioxide has been reported.
Studies have shown arsenic reorganizes nuclear bodies and degrades the mutant PML-RAR fusion protein. Arsenic also increases caspase activity which then induces apoptosis. It does reduce the relapse rate for high risk patients. In Japan a synthetic retinoid, tamibarotene, is licensed for use as a treatment for ATRA-resistant APL.
Radiation to the spleen does not generally result in a decrease in spleen size or reduction of platelet transfusion requirement.
To overcome imatinib resistance and to increase responsiveness to TK inhibitors, four novel agents were later developed. The first, dasatinib, blocks several further oncogenic proteins, in addition to more potent inhibition of the BCR-ABL protein, and was initially approved in 2007 by the US FDA to treat CML in patients who were either resistant to or intolerant of imatinib. A second new TK inhibitor, nilotinib, was also approved by the FDA for the same indication. In 2010, nilotinib and dasatinib were also approved for first-line therapy, making three drugs in this class available for treatment of newly diagnosed CML. In 2012, Radotinib joined the class of novel agents in the inhibition of the BCR-ABL protein and was approved in South Korea for patients resistant to or intolerant of imatinib. Bosutinib received US FDA and EU European Medicines Agency approval on September 4, 2012 and 27 March 2013 respectively for the treatment of adult patients with Philadelphia chromosome-positive (Ph+) chronic myelogenous leukemia (CML) with resistance, or intolerance to prior therapy.
Neutrophils are the primary white blood cells that respond to a bacterial infection, so the most common cause of neutrophilia is a bacterial infection, especially pyogenic infections.
Neutrophils are also increased in any acute inflammation, so will be raised after a heart attack, other infarct or burns.
Some drugs, such as prednisone, have the same effect as cortisol and adrenaline (epinephrine), causing marginated neutrophils to enter the blood stream. Nervousness will very slightly raise the neutrophil count because of this effect.
A neutrophilia might also be the result of a malignancy. Chronic myelogenous leukemia (CML or chronic myeloid leukaemia) is a disease where the blood cells proliferate out of control. These cells may be neutrophils. Neutrophilia can also be caused by appendicitis and splenectomy.
Primary neutrophilia can additionally be a result of Leukocyte adhesion deficiency.
First-line treatment of AML consists primarily of chemotherapy, and is divided into two phases: induction and postremission (or consolidation) therapy. The goal of induction therapy is to achieve a complete remission by reducing the number of leukemic cells to an undetectable level; the goal of consolidation therapy is to eliminate any residual undetectable disease and achieve a cure. Hematopoietic stem cell transplantation is usually considered if induction chemotherapy fails or after a person relapses, although transplantation is also sometimes used as front-line therapy for people with high-risk disease. Efforts to use tyrosine kinase inhibitors in AML continue.
Acute GPP typically requires inpatient management including both topical and systemic therapy, and supportive measures. Systemic glucocorticoid withdrawal is a common causative agent. Withdrawal or administration of certain drugs in the patient's previous medication regimen may be required. Oral retinoids are the most effective treatment, and are considered first line. Cyclosporine or infliximab may be required for particularly acute cases.
Neutropenia can be acquired or intrinsic. A decrease in levels of neutrophils on lab tests is due to either decreased production of neutrophils or increased removal from the blood. The following list of causes is not complete.
- Medications - chemotherapy, sulfas or other antibiotics, phenothiazenes, benzodiazepines, antithyroids, anticonvulsants, quinine, quinidine, indomethacin, procainamide, thiazides
- Radiation
- Toxins - alcohol, benzenes
- Intrinsic disorders - Fanconi's, Kostmann's, cyclic neutropenia, Chédiak–Higashi
- Immune dysfunction - disorders of collagen, AIDS, rheumatoid arthritis
- Blood cell dysfunction - megaloblastic anemia, myelodysplasia, marrow failure, marrow replacement, acute leukemia
- Any major infection
- Miscellaneous - starvation, hypersplenism
Symptoms of neutropenia are associated with the underlying cause of the decrease in neutrophils. For example, the most common cause of acquired neutropenia is drug-induced, so an individual may have symptoms of medication overdose or toxicity.
Treatment is also aimed at the underlying cause of the neutropenia. One severe consequence of neutropenia is that it can increase the risk of infection.
The first of this new class of drugs was imatinib mesylate (marketed as Gleevec or Glivec), approved by the U.S. Food and Drug Administration (FDA) in 2001. Imatinib was found to inhibit the progression of CML in the majority of patients (65–75%) sufficiently to achieve regrowth of their normal bone marrow stem cell population (a cytogenetic response) with stable proportions of maturing white blood cells. Because some leukemic cells (as evaluated by RT-PCR) persist in nearly all patients, the treatment has to be continued indefinitely. Since the advent of imatinib, CML has become the first cancer in which a standard medical treatment may give to the patient a normal life expectancy.
The theory behind splenectomy in JMML is that the spleen may trap leukemic cells, leading to the spleen's enlargement, by harboring dormant JMML cells that are not eradicated by radiation therapy or chemotherapy for the active leukemia cells, thus leading to later relapse if the spleen is not removed. However, the impact of splenectomy on post-transplant relapse, though, is unknown. The COG JMML study includes splenectomy as a standard component of treatment for all clinically stable patients. The EWOG-MDS JMML study allows each child’s physician to determine whether or not a splenectomy should be done, and large spleens are commonly removed prior to bone marrow transplant. When a splenectomy is scheduled, JMML patients are advised to receive vaccines against "Streptococcus pneumoniae" and "Haemophilus influenza" at least 2 weeks prior to the procedure. Following splenectomy, penicillin may be administered daily in order to protect the patient against bacterial infections that the spleen would otherwise have protected against; this daily preventative regimen will often continue indefinitely.