Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There are many strategies to cultural management. Establishment of new trees that are disease free by trying to plant trees as soon as they are received from the nursery to reduce the amount of stress the tree undergoes to reduce the amount of dead tissue. Apply insecticides to prevent insects such as, peach tree borer to prevent disease causing conidia from entering wounded parts of the tree that the insects create. Prune trees appropriately and at the correct time when buds start to break to promote wide angled branching. Infection at pruning sites is less common when done during late spring because of the smaller amount of inoculum present at this time. Inspect trees occasionally and removed any dead branches to prevent infection at these sites. Training trees properly also helps foster decreased amount of disease. Training trees during the first season to have branches develop wide crotch angles to sustain long orchard life. Avoid excessive and late fertilization during cold season to avoid low temperature injury. Fertilize trees during the early spring to prevent cold-susceptible growth.
Management of Bleeding Canker of Chestnut is not definitive and treatments are currently being investigated. Because the pathogen can be spread by contaminated tools, cultural practices are important to management. Tools should be cleaned and used with caution after being used on infected trees. Recovery of trees is possible, so management strategies are focused on keeping trees healthy so they can recover. One recommendation is to add fertilizer that contains Potassium phosphate. Soil de-compaction, providing good drainage, and mulching to minimize fluctuation of soil temperature and moisture are all ways to improve or maintain tree health and to manage the pathogen.
Chemical methods can be used to help the tree maintain health and avoid progress of the disease. Management strategies are currently being developed. A study performed in 2015 examined the infection on trees and found that 41 F1 progeny parent tree source had the most promising lines of viability for resistance.
The best way to manage SDS is with a resistant variety. One issue is that most resistant varieties are only partially resistant so yield reductions may still occur. Another issue is that the plant needs resistance for SDS and SCN in order to gain true resistance because of their synergistic relationship and most varieties do not have resistance for both. Aside from resistance, the only other ways to control SDS are management practices.
These include:
- Avoid planting in cool, wet conditions
- Plant later when the soil has warmed up
- Try avoiding soil compaction as it creates wet spots in the soil that can increase plant stress and SDS infection rates
- Managing for SCN as this nematode often occurs alongside "F. virguliforme"
- Deep tillage to break up compaction and help the soil warm faster
One common management tactic used in other pathogen management plans is crop rotation. In some cases, disease severity can be reduced but most often it is not effective. This is because of chlamydospores and macroconidia as they can persist in soils for many years.
Fungicides are another common product used to control fungal pathogens. In-furrow applications and seed treatments with fungicides have some effect in decreasing disease instance but in most cases, the timing isn't right and the pathogen can still infect the plants. Foliar applications of fungicides have no effect on disease suppression for SDS because the fungi are found in the soil and mainly the roots of the plants. Most foliar fungicides do not move downward through plants, therefore having no effect on the pathogen.
Control of Leucostoma Canker is possible through a combination of pest and crop management techniques following life cycles of the trees. The strategy is implemented following techniques aimed at reducing number of pathogenic inoculum, minimizing dead or injured tissues to prevent infection, and improving tree health to improve rapid wound healing. Chemical controls have not been very effective at controlling this disease with no fungicides registered specifically for control of "Leucostoma" spp., and demethylation-inhibiting (DMI) fungicides having almost no effect on "L. persoonii".
Control of the beetle vector is the most effective management technique for disease prevention. Conventional methods of tree thinning and the use of insecticides have been used to combat the western bark beetles, but are only effective before the beetles have colonized and before the fungus has invaded the tree. Other cultural techniques of sanitation and overall health of the oak trees by keeping up with watering, fertilizer or mulch needs, and pruning may help. It is very important to diagnose foamy bark canker disease correctly and promptly in order to manage the disease properly because if a tree is already infected, the removal of the tree is the most effective way to prevent the disease from spreading.
Thousand cankers disease can be spread by moving infected black walnut wood. Trees intended for shipment should be inspected for dieback and cankers and galleries after harvest. G. morbidia or the walnut twig beetle ("Pityophthorus juglandis") are not currently known to be moved with walnut seed . There is currently no chemical therapy or prevention available for the disease making it difficult to control the spread of the disease from the west to the eastern united states. Wood from infected trees can still be used for commercial value, but safety measures such as removing the bark, phloem, and cambium to reduce the risk of spreading the disease with shipment. Quarantines have been put in place in some states to reduce the potential movement of fungus or beetle from that region. On May 17th, 2010, the Director of the Michigan Department of Agriculture issued a quarantine from affected states to protect Michigan’s black walnut ecology and production. Contacting the appropriate entities about possible infections is important to stopping or slowing the spread of thousand cankers disease.
The genus Geosmithia (Ascomycota: Hypocreales) are generally saprophytic fungi affecting hardwoods. As of its identification in 2010, the species G. morbida is the first documented as a plant pathogen. The walnut twig beetle ("Pityophthorus juglandis") carries the mycelium and conidia of the fungus as it burrows into the tree. The beetle is currently only found in warmer climates, allowing for transmission of the fungus throughout the year. Generations of the beetle move to and from black walnut trees carrying the fungus as they create galleries, the adults typically moving horizontally, and the larvae moving vertically with the grain. As they move through the wood, the beetles deposit the fungus, which is then introduced into the phloem; cankers then develop around the galleries, quickly girdling the tree. The fungus has not been found to provide any value to the beetle. A study done by Montecchio and Faccoli in Italy in 2014 found that no fungal fruiting bodies were found around or on the cankers but in the galleries. Mycelium, and sometimes conidiophores and conidia were observed in the galleries as well. No sexual stage of the fungus has currently been found.
In Ghana, a study that combined the sanitation and fungicide application showed a significant reduction in the percentage of disease incidence, where greater black pod incident were observed from pods on the trunk than the canopy in control treatment (no fungicide application). This suggested that the application of fungicide on the trunk would protect pods from infection, therefore reduce primary and secondary infection rate, both on the trunk and in the canopy. In addition, the application of systemic (potassium phosphonate) with one and double injection (20 ml and 40 ml of fungicide for each injection frequency), and semi-systemic (metalaxyl) fungicide showed better control compared to contact fungicides (copper based fungicide) in both locations that were used in the experiment.
The foamy bark canker is a disease affecting oak trees in California caused by the fungus "Geosmithia pallida" and spread by the Western oak bark beetle ("Pseudopityopthorus pubipennis"). This disease is only seen through the symbiosis of the bark beetles and the fungal pathogen. The bark beetles target oak trees and bore holes through the peridermal tissues, making tunnels within the phloem. The fungal spores are brought into these tunnels by the beetles and begin to colonize the damaged cells inside the tunnels. Symptoms of the developing fungus include wet discoloration seeping from the beetle entry holes as the fungus begins to consume phloem and likely other tissues. If bark is removed, necrosis of the phloem can be observed surrounding the entry hole(s). As the disease progresses, a reddish sap and foamy liquid oozes from entry holes, thus giving the disease the name Foamy bark canker. Eventually after the disease has progressed, the tree dies. This disease is important because of its detrimental effects on oak trees and its ability to spread to several new Californian counties in just a couple years.
The application of copper fungicide has been shown to significantly reduce a great number of black pod incidences in Nigeria. Metalaxyl (Ridomil) and cuprous oxide (Perenox) were identified to be successful in increasing the number of harvested healthy pod compared to the application of fosetyl aluminium (Aliete) and control treatment. On top of that, the timing of fungicide application has some positive effect on the final pod yield where this plot produced greater yield than the unsprayed plot. The application was done before August, which is before the main disease epidemic that usually occurs in September and October.
The recommended standard for fungicide application to control black pod disease caused by "P. megakarya" for a season is 6 to 8 times of application in every 3–4 weeks. However, the adoption of recommended application was very low among farmers in Ghana. Therefore, an experiment with a reduced number of fungicide applications demonstrated that there was 25 to 45% reduction in disease incidence. In terms of disease control and yields, sanitation and three applications of Ridomil 72 plus (12% metalaxyl + 60% copper-1-oxide) fungicide showed a better control compared to sanitation alone and sanitation with one or two fungicide applications. However, reduced in fungicide application was shown to be significantly less effective than the recommended standard fungicide application.
It was suggested that the understanding regarding the source of inoculum, the amount of infective inoculum production and how the disease is disseminated is important in order to identify the appropriate and economical method in fungicide application as well as for an effective control of the disease. For example, the application of fungicide on the trunk will help farmers to control the spread of the disease up in the canopy, as it is difficult to reach the canopy during fungicide application. This will eventually save more time, labor and cost for disease management.
Dead arm, sometimes grape canker, is a disease of grapes caused by a deep-seated wood rot of the arms or trunk of the grapevine. As the disease progresses over several years, one or more arms may die, hence the name "dead arm". Eventually the whole vine will die. In the 1970s, dead-arm was identified as really being two diseases, caused by two different fungi, "Eutypa lata" and "Phomopsis viticola" (syn. "Cryptosporella viticola").
Sudden Death Syndrome (SDS) in Soybean plants quickly spread across the southern United States in the 1970s, eventually reaching most agricultural areas of the US. SDS is caused by a Fusarium fungi, more specifically the soil borne root pathogen "Fusarium virguliforme," formerly known as "Fusarium solani" f. sp. "glycines"."." Losses could exceed hundreds of millions of dollars in US soybean markets alone making it one of the most important diseases found in Soybeans across the US
Dead arm is a disease that causes symptoms in the common grapevine species, "vitis vinifera", in many regions of the world. This disease is mainly caused by the fungal pathogen, "Phomopsis viticola", and is known to affect many cultivars of table grapes, such as Thompson Seedless, Red Globe, and Flame Seedless. Early in the growing season, the disease can delay the growth of the plant and cause leaves to turn yellow and curl. Small, brown spots on the shoots and leaf veins are very common first symptoms of this disease. Soil moisture and temperature can impact the severity of symptoms, leading to a systemic infection in warm, wet conditions. As the name of this disease suggests, it also causes one or more arms of the grapevine to die, often leading to death of the entire vine.
Bleeding canker of horse chestnut is a common canker of horse chestnut trees ("Aesculus hippocastanum", also known as conker trees) that is known to be caused by infection with several different pathogens.
Infections by the gram-negative fluorescent bacterium "Pseudomonas syringae" pathovar "aesculi" are a new phenomenon, and have caused most of the bleeding cankers on horse chestnut that are now frequently seen in Britain.
Canker and anthracnose generally refer to many different plant diseases of such broadly similar symptoms as the appearance of small areas of dead tissue, which grow slowly, often over years. Some are of only minor consequence, but others are ultimately lethal and therefore of major economic importance in agriculture and horticulture. Their causes include such a wide range of organisms as fungi, bacteria, mycoplasmas and viruses. The majority of canker-causing organisms are bound to a unique host species or genus, but a few will attack other plants. Weather and animals can spread canker, thereby endangering areas that have only slight amount of canker.
Although fungicides or bactericides can treat some cankers, often the only available treatment is to destroy the infected plant to contain the disease.
Grapevine trunk diseases (GTD) are the most destructive diseases of vineyards worldwide. Fungicides (such as sodium arsenite or 8-hydroxyquinoline, used to fight esca) with the potential to control GTD have been banned in Europe and there are no highly effective treatments available. Action to develop new strategies to fight these diseases are needed.
The following fungal species are responsible for grapevine trunk diseases:
- "Botryosphaeria dothidea" and other "Botryosphaeria" species, such as , "B. obtusa", "B. parva" and "B. australis",
- "Cylindrocarpon" spp., "Ilyonectria" spp., "Dactylonectria" spp. and "Campylocarpon" spp.(cause of black foot disease)
- "Diplodia seriata" (cause of bot canker)
- "Diplodia mutila" (cause of Botryosphaeria dieback)
- "Dothiorella iberica"
- "Dothiorella viticola"
- "Eutypa lata" (cause of Eutypa dieback)
- "Fomitiporia mediterranea" (cause of esca)
- "Lasiodiplodia theobromae" (cause of Botryosphaeria dieback)
- "Neofusicoccum australe"
- "Neofusicoccum luteum"
- "Neofusicoccom parvum"
- "Phaeoacremonium minimum" (cause of esca and Petri disease) and other "Phaeoacremonium" species
- "Phaeomoniella chlamydospora" (cause of esca and Petri disease)
The vast majority of people with aphthous stomatitis have minor symptoms and do not require any specific therapy. The pain is often tolerable with simple dietary modification during an episode of ulceration such as avoiding spicy and acidic foods and beverages. Many different topical and systemic medications have been proposed (see table), sometimes showing little or no evidence of usefulness when formally investigated. Some of the results of interventions for RAS may in truth represent a placebo effect. No therapy is curative, with treatment aiming to relieve pain, promote healing and reduce the frequency of episodes of ulceration.
The first line therapy for aphthous stomatitis is topical agents rather than systemic medication, with topical corticosteroids being the mainstay treatment. Systemic treatment is usually reserved for severe disease due to the risk of adverse side effects associated with many of these agents. A systematic review found that no single systemic intervention was found to be effective. Good oral hygiene is important to prevent secondary infection of the ulcers.
Occasionally, in females where ulceration is correlated to the menstrual cycle or to birth control pills, progestogen or a change in birth control may be beneficial. Use of nicotine replacement therapy for people who have developed oral ulceration after stopping smoking has also been reported. Starting smoking again does not usually lessen the condition. Trauma can be reduced by avoiding rough or sharp foodstuffs and by brushing teeth with care. If sodium lauryl sulfate is suspected to be the cause, avoidance of products containing this chemical may be useful and prevent recurrence in some individuals. Similarly patch testing may indicate that food allergy is responsible, and the diet modified accordingly. If investigations reveal deficiency states, correction of the deficiency may result in resolution of the ulceration. For example, there is some evidence that vitamin B12 supplementation may prevent recurrence in some individuals.
Treatment is cause-related, but also symptomatic if the underlying cause is unknown or not correctable. It is also important to note that most ulcers will heal completely without any intervention. Treatment can range from simply smoothing or removing a local cause of trauma, to addressing underlying factors such as dry mouth or substituting a problem medication. Maintaining good oral hygiene and use of an antiseptic mouthwash or spray (e.g. chlorhexidine) can prevent secondary infection and therefore hasten healing. A topical analgesic (e.g. benzydamine mouthwash) may reduce pain. Topical (gels, creams or inhalers) or systemic steroids may be used to reduce inflammation. An antifungal drug may be used to prevent oral candidiasis developing in those who use prolonged steroids. People with mouth ulcers may prefer to avoid hot or spicy foods, which can increase the pain. Self-inflicted ulceration can be difficult to manage, and psychiatric input may be required in some people.
No definite standard treatment have been set. This is because treatments of the disease has been poorly studied as of 2014. Often in cases of inflammatory parenchymal disease, "corticosteroids should be given as infusions of
intravenous methylprednisolone followed by a slowly tapering course of oral steroids". It is suggested that therapy should be continued for a period of time even when the symptoms get suppressed because early relapse may occur. Sometimes, the medical doctors may suggest a different steroid depending on the nature of the disease, the severity, and the response to steroids. According to several studies, parenchymal NBD patients successfully suppress the symptoms with the prescribed steroids. As for non-parenchymal patients, there is no general consensus on how to treat the disease. The reason is that the mechanisms of cerebral venous thrombosis in BD are still poorly understood. Some doctors use anti-coagulants to prevent a clot. On the other hand, some doctors only give steroids and immunosuppressants alone.
Docosanol, a saturated fatty alcohol, is a safe and effective topical application that has been approved by the United States Food and Drug Administration for herpes labialis in adults with properly functioning immune systems. It is comparable in effectiveness to prescription topical antiviral agents. Due to its mechanism of action, there is little risk of drug resistance. The duration of symptoms can be shortened a bit if an antiviral, anesthetic, zinc oxide or zinc sulfate cream is applied soon after it starts.
Effective antiviral medications include acyclovir and penciclovir, which can speed healing by as much as 10%. Famciclovir or valacyclovir, taken in pill form, can be effective using a single day, high-dose application and is more cost effective and convenient than the traditional treatment of lower doses for 5–7 days.
Foot-and-mouth disease or hoof-and-mouth disease (Aphthae epizooticae) is an infectious and sometimes fatal viral disease that affects cloven-hoofed animals, including domestic and wild bovids. The virus causes a high fever for approximately two to six days, followed by blisters inside the mouth and on the feet that may rupture and cause lameness.
Foot-and-mouth disease (FMD) has very severe implications for animal farming, since it is highly infectious and can be spread by infected animals comparatively easily through contact with contaminated farming equipment, vehicles, clothing, feed and by domestic and wild predators. Its containment demands considerable efforts in vaccination, strict monitoring, trade restrictions, quarantines and occasionally the culling of animals.
Susceptible animals include cattle, water buffalo, sheep, goats, pigs, antelope, deer, and bison. It has also been known to infect hedgehogs and elephants; llamas and alpacas may develop mild symptoms, but are resistant to the disease and do not pass it on to others of the same species. In laboratory experiments, mice, rats, and chickens have been successfully infected by artificial means, but they are not believed to contract the disease under natural conditions. Humans are very rarely infected.
The virus responsible for the disease is a picornavirus, the prototypic member of the genus "Aphthovirus". Infection occurs when the virus particle is taken into a cell of the host. The cell is then forced to manufacture thousands of copies of the virus, and eventually bursts, releasing the new particles in the blood. The virus is genetically highly variable, which limits the effectiveness of vaccination.
The incubation period for foot-and-mouth disease virus has a range between one and 12 days. The disease is characterized by high fever that declines rapidly after two or three days, blisters inside the mouth that lead to excessive secretion of stringy or foamy saliva and to drooling, and blisters on the feet that may rupture and cause lameness. Adult animals may suffer weight loss from which they do not recover for several months, as well as swelling in the testicles of mature males, and in cows, milk production can decline significantly. Though most animals eventually recover from FMD, the disease can lead to myocarditis (inflammation of the heart muscle) and death, especially in newborn animals. Some infected ruminants remain asymptomatic carriers, but they nonetheless carry FMDV and may be able to transmit it to others. Pigs cannot serve as asymptomatic carriers.
The likelihood of the infection being spread can be reduced through behaviors such as avoiding touching an active outbreak site, washing hands frequently while the outbreak is occurring, not sharing items that come in contact with the mouth, and not coming into close contact with others (by avoiding kissing, oral sex, or contact sports).
Because the onset of an infection is difficult to predict, lasts a short period of time and heals rapidly, it is difficult to conduct research on cold sores. Though famciclovir improves lesion healing time, it is not effective in preventing lesions; valaciclovir and a mixture of acyclovir and hydrocortisone are similarly useful in treating outbreaks but may also help prevent them.
Acyclovir and valacyclovir by mouth are effective in preventing recurrent herpes labialis if taken prior to the onset of any symptoms or exposure to any triggers. Evidence does not support L-lysine.
Medications offered can include the immunosuppressant prednisone, intravenous gamma globulin (IVIG), anticonvulsants such as gabapentin or Gabitril and antiviral medication, depending on the underlying cause..
In addition to treatment of the underlying disorder, palliative care can include the use of topical numbing creams, such as lidocaine or prilocaine. Care must be taken to apply only the necessary amount, as excess can contribute to the condition. Otherwise, these products offer extremely effective, but short-lasting, relief from the condition.
Paresthesia caused by stroke may receive some temporary benefit from high doses of Baclofen multiple times a day. HIV patients who self-medicate with cannabis report that it reduces their symptoms.
Paresthesia caused by shingles is treated with appropriate antiviral medication.