Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no causative / curative therapy. Symptomatic medical treatments are focussing on symptoms caused by orthopaedic, dental or cardiac problems. Regarding perioperative / anesthesiological management, recommendations for medical professionals are published at OrphanAnesthesia.
Treatment of Roberts syndrome is individualized and specifically aimed at improving the quality of life for those afflicted with the disorder. Some of the possible treatments include: surgery for the cleft lip and palate, correction of limb abnormalities (also through surgery), and improvement in prehensile hand grasp development.
If a contracture is less than 30 degrees, it may not interfere with normal functioning. The common treatment is splinting and occupational therapy. Surgery is the last option for most cases as the result may not be satisfactory.
Like treatment options, the prognosis is dependent on the severity of the symptoms. Despite the various symptoms and limitations, most individuals have normal intelligence and can lead a normal life.
Because kniest dysplasia can affect various body systems, treatments can vary between non-surgical and surgical treatment. Patients will be monitored over time, and treatments will be provided based on the complications that arise.
MRI will help with the diagnosis of structural abnormality of the brain. Genetic testing may also be pursued.
Oculofaciocardiodental syndrome is a rare X linked genetic disorder.
Lenz microphthalmia syndrome (or LMS) is a very rare inherited disorder characterized by abnormal smallness of one or both eyes (microphthalmos) sometimes with droopy eyelids (blepharoptosis), resulting in visual impairment or blindness. Eye problems may include coloboma, microcornea, and glaucoma. Some affected infants may have complete absence of the eyes (anophthalmia). Most affected infants have developmental delay and intellectual disability, ranging from mild to severe. Other physical abnormalities associated with this disorder can include an unusually small head (microcephaly), and malformations of the teeth, ears, fingers or toes, skeleton, and genitourinary system. The range and severity of findings vary from case to case. Formal diagnosis criteria do not exist.
Lenz microphthalmia syndrome is inherited as an X-linked recessive genetic trait and is fully expressed in males only. Females who carry one copy of the disease gene (heterozygotes) may exhibit some of the symptoms associated with the disorder, such as an abnormally small head (microcephaly), short stature, or malformations of the fingers or toes. Molecular genetic testing of BCOR (MCOPS2 locus), the only gene known to be associated with Lenz microphthalmia syndrome, is available on a clinical basis. One additional locus on the X chromosome (MCOPS1) is known to be associated with LMS.
Lenz microphthalmia syndrome is also known as LMS, Lenz syndrome, Lenz dysplasia, Lenz dysmorphogenetic syndrome, or microphthalmia with multiple associated anomalies (MAA: OMIM 309800). It is named after Widukind Lenz, a German geneticist and dysmorphologist.
A somewhat similar X-linked syndrome of microphthalmia, called oculofaciocardiodental syndrome (OFCD) is associated with mutations in BCOR. OFCD syndrome is inherited in an X-linked dominant pattern with male lethality.
Roberts syndrome, or sometimes called "pseudothalidomide syndrome", is an extremely rare genetic disorder that is characterized by mild to severe prenatal retardation or disruption of cell division, leading to malformation of the bones in the skull, face, arms, and legs.
Roberts syndrome is also known by many other names, including: hypomelia-hypotrichosis-facial hemangioma syndrome, SC syndrome (once thought to be an entirely separate disease), pseudothalidomide syndrome, Roberts-SC phocomelia syndrome, SC phocomelia syndrome, Appelt-Gerken-Lenz syndrome, RBS, SC pseudothalidomide syndrome, and tetraphocomelia-cleft palate syndrome. It is a genetic disorder caused by the mutation of the ESCO2 gene on 8th chromosome. Named after the famous Philadelphia surgeon and physician, Dr. John Bingham Roberts (1852–1924), who first described the syndrome in 1919, it is one of the rarest autosomal recessive disorders, affecting approximately 150 known individuals.
The syndrome is both autosomal, in that there are equal numbers of copies of the gene in both males and females, and recessive, meaning the child must inherit the defective gene from both parents. The mutation causes cell division to occur slowly or unevenly, and the cells with abnormal genetic content die. Roberts syndrome can affect both males and females. Although the disorder is rare, the affected group is diverse. The mortality rate is high in severely affected individuals.
SCARF syndrome is a rare syndrome characterized by skeletal abnormalities, cutis laxa, craniostenosis, ambiguous genitalia, retardation, and facial abnormalities. It shares some features with Lenz-Majewski hyperostotic dwarfism syndrome.
Treatment of manifestations: special hair care products to help manage dry and sparse hair; wigs; artificial nails; emollients to relieve palmoplantar hyperkeratosis.
In utero exposure to cocaine and other street drugs can lead to septo-optic dysplasia.
The incidence of this condition is <1 per million population. It is found only in females as all affected males die before birth. Teeth with large roots (radiculomegaly), heart defects, and small eyes (microphthalmia) are the characteristic triad found in this syndrome.
Typical features of the condition include:
- Face
- Deep set eyes
- Broad nasal tip divided by a cleft
- Eyes
- Microphthalmia (small eyes)
- Early cataracts
- Glaucoma
- Teeth
- Radiculomegaly (teeth with very large roots)
- Delayed loss of primary teeth
- Missing (oligodontia) or abnormally small teeth
- Misaligned teeth
- Defective tooth enamel.
- Heart defects
- Atrial and/or ventricular defects
- Mitral valve prolapse
- Mild mental retardation and conductive or sensorineural hearing loss may occur.
Papillorenal syndrome, also called renal-coloboma syndrome or isolated renal hypoplasia, is an autosomal dominant genetic disorder marked by underdevelopment (hypoplasia) of the kidney and colobomas of the optic nerve.
Acro–dermato–ungual–lacrimal–tooth (ADULT) syndrome is a rare genetic disease. ADULT syndrome is an autosomal dominant form of ectodermal dysplasia, a group of disorders that affects the hair, teeth, nails, sweat glands, and extremities. The syndrome arises from a mutation in the TP63 gene. This disease was previously thought to be a form of ectrodactyly–ectodermal dysplasia–cleft syndrome (EEC), but was classified as a different disease in 1993 by Propping and Zerres.
Cenani–Lenz syndactylism, also known as Cenani–Lenz syndrome or Cenani–syndactylism, is an autosomal recessive congenital malformation syndrome involving both upper and lower extremities.
Symptomatic individuals should be seen by an orthopedist to assess the possibility of treatment (physiotherapy for muscular strengthening, cautious use of analgesic medications such as nonsteroidal anti-inflammatory drugs). Although there is no cure, surgery is sometimes used to relieve symptoms. Surgery may be necessary to treat malformation of the hip (osteotomy of the pelvis or the collum femoris) and, in some cases, malformation (e.g., genu varum or genu valgum). In some cases, total hip replacement may be necessary. However, surgery is not always necessary or appropriate.
Sports involving joint overload are to be avoided, while swimming or cycling are strongly suggested. Cycling has to be avoided in people having ligamentous laxity.
Weight control is suggested.
The use of crutches, other deambulatory aids or wheelchair is useful to prevent hip pain. Pain in the hand while writing can be avoided using a pen with wide grip.
The disorder is progressive, with the ultimate severity of symptoms often depending on age of onset. In severe cases amputation has been performed when conservative measures such as physical therapy and regional anesthetics have been ineffective.
ADULT syndrome features include ectrodactyly, syndactyly, excessive freckling, lacrimal duct anomalies, dysplastic nails, hypodontia, hypoplastic breasts and nipples, hypotrichosis, hypohidrosis, broad nasal bridge, midfacial hypoplasia, exfoliative dermatitis, and xerosis. The lack of facial clefting and ankyloblepharon are important because they exist in ectrodactyly–ectodermal dysplasia–cleft syndrome (EEC) but not in ADULT syndrome.
Ectrodactyly–ectodermal dysplasia–cleft syndrome, or EEC, and also referred to as EEC syndrome (also known as "Split hand–split foot–ectodermal dysplasia–cleft syndrome") is a rare form of ectodermal dysplasia, an autosomal dominant disorder inherited as an genetic trait. EEC is characterized by the triad of ectrodactyly, ectodermal dysplasia, and facial clefts. Other features noted in association with EEC include vesicoureteral reflux, recurrent urinary tract infections, obstruction of the nasolacrimal duct, decreased pigmentation of the hair and skin, missing or abnormal teeth, enamel hypoplasia, absent punctae in the lower eyelids, photophobia, occasional cognitive impairment and kidney anomalies, and conductive hearing loss.
The syndrome is named after Turkish (Asim Cenani) and German (Widukind Lenz) medical geneticists.
Lenz–Majewski syndrome is a skin condition characterized by hyperostosis, craniodiaphyseal dysplasia, dwarfism, cutis laxa, proximal symphalangism, syndactyly, brachydactyly, mental retardation, enamel hypoplasia, and hypertelorism.
In 2013, whole-exome sequencing showed that a missense mutation resulting in overactive phosphatidylserine synthase 1 was the cause of LMS, making it the first known human disease to be caused by disrupted phosphatidylserine metabolism. The researchers suggested a link between the condition and bone metabolism.
Ellis–van Creveld Syndrome (also called "chondroectodermal dysplasia" or "mesoectodermal dysplasia" but see 'Nomenclature' section below) is a rare genetic disorder of the skeletal dysplasia type.
Modeling EEC syndrome in vitro has been achieved by reprogramming EEC fibroblasts carrying mutations R304W and R204W into induced pluripotent stem cell (iPSC) lines. EEC-iPSC recapitulated defective epidermal and corneal fates. This model further identified PRIMA-1MET, a small compound that was identified as a compound targeting and reactivating p53 mutants based on a cell-based screening for rescuing the apoptotic activity of p53, as efficient to rescue R304W mutation defect. Of interest, similar effect had been observed on keratinocytes derived from the same patients. PRIMA-1MET could become an effective therapeutic tool for EEC patients.
Further genetic research is necessary to identify and rule out other possible loci contributing to EEC syndrome, though it seems certain that disruption of the p63 gene is involved to some extent. In addition, genetic research with an emphasis on genetic syndrome differentiation should prove to be very useful in distinguishing between syndromes that present with very similar clinical findings. There is much debate in current literature regarding clinical markers for syndromic diagnoses. Genetic findings could have great implications in clinical diagnosis and treatment of not only EEC, but also many other related syndromes.
Hay–Wells syndrome (also known as AEC syndrome; see "Naming") is one of at least 150 known types of ectodermal dysplasia.These disorders affect tissues that arise from the ectodermal germ layer, such as skin, hair, and nails.