Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment options vary from very conservative to aggressive. Conservative options include rest, observation, pain control, diet changes, use of a nasopharyngeal tube or oropharyngeal tube, and antibiotic therapy. More aggressive options include surgical repair of the hyoid bone and/or tracheotomy. Surgical treatment was used in 10.9% of cases in a 2012 meta-analysis.
A Cochrane review of low-intensity pulsed ultrasound to speed healing in newly broken bones found insufficient evidence to justify routine use. Other reviews have found tentative evidence of benefit. It may be an alternative to surgery for established nonunions.
Vitamin D supplements combined with additional calcium marginally reduces the risk of hip fractures and other types of fracture in older adults; however, vitamin D supplementation alone did not reduce the risk of fractures.
This treatment consists of aligning a bone or bones by a gentle, steady pulling action. The pulling may be transmitted to the bone or bones by a metal pin through a bone or by skin tapes. This is a preliminary treatment used in preparation for other secondary treatments.
The use of surgery to treat a Jefferson fracture is somewhat controversial. Non-surgical treatment varies depending on if the fracture is stable or unstable, defined by an intact or broken transverse ligament and degree of fracture of the anterior arch. An intact ligament requires the use of a soft or hard collar, while a ruptured ligament may require traction, a halo or surgery. The use of rigid halos can lead to intracranial infections and are often uncomfortable for individuals wearing them, and may be replaced with a more flexible alternative depending on the stability of the injured bones, but treatment of a stable injury with a halo collar can result in a full recovery. Surgical treatment of a Jefferson fracture involves fusion or fixation of the first three cervical vertebrae; fusion may occur immediately, or later during treatment in cases where non-surgical interventions are unsuccessful. A primary factor in deciding between surgical and non-surgical intervention is the degree of stability as well as the presence of damage to other cervical vertebrae.
Though a serious injury, the long-term consequences of a Jefferson's fracture are uncertain and may not impact longevity or abilities, even if untreated. Conservative treatment with an immobilization device can produce excellent long-term recovery.
A 2013 Cochrane review assessed clinical studies on surgical (open reduction) and non-surgical (closed reduction) management of mandible fractures that do not involve the condyle. The review found insufficient evidence to recommend the effectiveness of any single intervention.
Treatment of this fracture depends on the severity of the fracture. An undisplaced fracture may be treated with a cast alone. A fracture with mild angulation and displacement may require closed reduction. Significant angulation and deformity may require an open reduction and internal fixation. An open fracture will always require surgical intervention.
Galeazzi fractures are best treated with open reduction of the radius and the distal radio-ulnar joint. It has been called the "fracture of necessity," because it necessitates open surgical treatment in the adult. Nonsurgical treatment results in persistent or recurrent dislocations of the distal ulna. However, in skeletally immature patients such as children, the fracture is typically treated with closed reduction.
This treatment is only used when an orthopedic surgeon assigns it to restore the fractured bone to its original function. This method positions the bones to their exact location, but there is a risk for infection and other complications. The procedure involves the orthopedist performing surgery on the bone to align the bone fragments, followed by the placement of special screws or metal plates to the outer surface of the bone. The fragments can also be held together by running metal rods through the marrow in the center of the bone.
The best treatment for condylar fractures is controversial. There are two main options, namely closed reduction or open reduction and fixation. Closed reduction may involve intermaxillary fixation, where the jaws are splinted together in the correct position for a period of weeks. Open reduction involves surgical exposure of the fracture site, which can be carried out via incisions within the mouth or incisions outside the mouth over the area of the condyle. Open reduction is sometimes combined with use of an endoscope to aid visualization of fracture site. Although closed reduction carries a risk of the bone healing out of position, with consequent alteration of the bite or the creation of facial asymmetry, it does not risk temporary damage to the facial nerve or result in any facial scar that accompanies open reduction. A systematic review was unable to find sufficient evidence of the superiority of one method over another in the management of condylar fractures. Paediatric condylar fractures are especially problematic, owing to the remaining growth potential and possibility of ankylosis of the joint. Early mobilization is often recommended as in the Walker protocol.
Ice is applied to relieve pain and swelling. Any open wounds are cleansed to avoid infection.
For most fractures with less than 70 degrees of angulation, buddy taping and a tensor bandage resulted in similar outcomes to reduction with splinting.
In rare cases surgery may be required to place pins or plates in the bone to hold the pieces in place.
Surgical methods of treating fractures have their own risks and benefits, but usually surgery is performed only if conservative treatment has failed, is very likely to fail, or likely to result in a poor functional outcome. With some fractures such as hip fractures (usually caused by osteoporosis), surgery is offered routinely because non-operative treatment results in prolonged immobilisation, which commonly results in complications including chest infections, pressure sores, deconditioning, deep vein thrombosis (DVT), and pulmonary embolism, which are more dangerous than surgery. When a joint surface is damaged by a fracture, surgery is also commonly recommended to make an accurate anatomical reduction and restore the smoothness of the joint.
Infection is especially dangerous in bones, due to the recrudescent nature of bone infections. Bone tissue is predominantly extracellular matrix, rather than living cells, and the few blood vessels needed to support this low metabolism are only able to bring a limited number of immune cells to an injury to fight infection. For this reason, open fractures and osteotomies call for very careful antiseptic procedures and prophylactic use of antibiotics.
Occasionally, bone grafting is used to treat a fracture.
Sometimes bones are reinforced with metal. These implants must be designed and installed with care. "Stress shielding" occurs when plates or screws carry too large of a portion of the bone's load, causing atrophy. This problem is reduced, but not eliminated, by the use of low-modulus materials, including titanium and its alloys. The heat generated by the friction of installing hardware can accumulate easily and damage bone tissue, reducing the strength of the connections. If dissimilar metals are installed in contact with one another (i.e., a titanium plate with cobalt-chromium alloy or stainless steel screws), galvanic corrosion will result. The metal ions produced can damage the bone locally and may cause systemic effects as well.
Initial treatment is typically in a cast, without any weight being placed on it, for at least six weeks. If after this period of time healing has not occurred a further six weeks of casting may be recommended. Up to half, however may not heal after casting.
In athletes or if the pieces of bone are separated by more than 2 mm surgery may be considered. Otherwise surgery is recommended if healing does not occur after 12 weeks of casting.
If intraarticular trapeziometacarpal fractures (such as the Bennett or Rolando fractures) are allowed to heal in a displaced position, significant post-traumatic osteoarthritis of the base of the thumb is virtually assured. Some form of surgical treatment (typically either a CRPP or an ORIF) is nearly always recommended to ensure a satisfactory outcome for these fractures, if there is significant displacement.
The long-term outcome after surgical treatment appears to be similar, whether the CRPP or the ORIF approach is used. Specifically, the overall strength of the affected hand is typically diminished, and post-traumatic osteoarthritis tends to develop in almost all cases. The degree of weakness and the severity of osteoarthritis does however appear to correlate with the quality of reduction of the fracture. Therefore, the goal of treatment of Bennett fracture should be to achieve the most precise reduction possible, whether by the CRPP or the ORIF approach.
The aim of treatment is to minimize pain and to restore as much normal function as possible. Most humerus fractures do not require surgical intervention. One-part and two-part proximal fractures can be treated with a collar and cuff sling, adequate pain medicine, and follow up therapy. Two-part proximal fractures may require open or closed reduction depending on neurovascular injury, rotator cuff injury, dislocation, likelihood of union, and function. For three- and four-part proximal fractures, standard practice is to have open reduction and internal fixation to realign the separate parts of the proximal humerus. A humeral hemiarthroplasty may be required in proximal cases in which the blood supply to the region is compromised. Fractures of the humerus shaft and distal part of the humerus are most often uncomplicated, closed fractures that require nothing more than pain medicine and wearing a cast or sling for a few weeks. In shaft and distal cases in which complications such as damage to the neurovascular bundle exist, then surgical repair is required.
The first line treatment should be reduction of movements for 6 to 12 weeks. Wooden-soled shoes or a cast should be given for this purpose. In rare cases in which stress fracture occurs with a cavus foot, plantar fascia release may be appropriate.
All patients should follow-up with an ophthalmologist within 1 week of the fracture. To prevent orbital emphysema, patients are advised to avoid blowing of the nose. Nasal decongestants are commonly used. It is also common practice to administer prophylactic antibiotics when the fracture enters a sinus, although this practice is largely anecdotal. Amoxicillin-clavulanate and azithromycin are most commonly used. Oral corticosteroids are used to decrease swelling.
Prognosis for these fractures is generally good, with total healing time not exceeding 12 weeks. The first two weeks will show significantly reduced overall swelling, with improvement in clenching ability showing up first. Ability to extend the fingers in all directions appears to improve more slowly. Hard casts are rarely required, and soft casts or splints can be removed for brief periods of time to allow for cleaning and drying the skin underneath the splint. Pain from injury varies person to person as with most injuries cannot in all honesty be generalized. Depending on the individual a course of over the counter or narcotic pain medication will suffice. Muscle atrophy of 5 to 15 percent may be expected, with a rehabilitation period of approximately 4 months given adequate therapy. In the mildest of cases, full rehabilitation status can be achieved within 3 to 4 months.
Though these fractures commonly appear quite subtle or even inconsequential on radiographs, they can result in severe long-term dysfunction of the hand if left untreated. In his original description of this type of fracture in 1882, Bennett stressed the need for early diagnosis and treatment in order to prevent loss of function of the thumb CMC joint, which is critical to the overall function of the hand.
- In the most minor cases of Bennett fracture, there may be only small avulsion fractures, relatively little joint instability, and minimal subluxation of the CMC joint (less than 1 mm). In such cases, closed reduction followed by immobilization in a thumb spica cast and serial radiography may be all that is required for effective treatment.
- For Bennett fractures where there is between 1 mm and 3 mm of displacement at the trapeziometacarpal joint, closed reduction and percutaneous pin fixation (CRPP) with Kirschner wires is often sufficient to ensure a satisfactory functional outcome. The wires are not employed to connect the two fracture fragments together, but rather to secure the first or second metacarpal to the trapezium.
- For Bennett fractures where there is more than 3 mm of displacement at the trapeziometacarpal joint, open reduction and internal fixation (ORIF) is typically recommended.
Regardless of which approach is employed (nonsurgical, CRPP, or ORIF), immobilization in a cast or thumb spica splint is required for four to six weeks.
An immediate need in treatment is to ensure that the airway is open and not threatened (for example by tissues or foreign objects), because airway compromisation can occur rapidly and insidiously, and is potentially deadly. Material in the mouth that threatens the airway can be removed manually or using a suction tool for that purpose, and supplemental oxygen can be provided. Facial fractures that threaten to interfere with the airway can be reduced by moving the bones back into place; this both reduces bleeding and moves the bone out of the way of the airway. Tracheal intubation (inserting a tube into the airway to assist breathing) may be difficult or impossible due to swelling. Nasal intubation, inserting an endotracheal tube through the nose, may be contraindicated in the presence of facial trauma because if there is an undiscovered fracture at the base of the skull, the tube could be forced through it and into the brain. If facial injuries prevent oraotracheal or nasotracheal intubation, a surgical airway can be placed to provide an adequate airway. Although cricothyrotomy and tracheostomy can secure an airway when other methods fail, they are used only as a last resort because of potential complications and the difficulty of the procedures.
A dressing can be placed over wounds to keep them clean and to facilitate healing, and antibiotics may be used in cases where infection is likely. People with contaminated wounds who have not been immunized against tetanus within five years may be given a tetanus vaccination. Lacerations may require stitches to stop bleeding and facilitate wound healing with as little scarring as possible. Although it is not common for bleeding from the maxillofacial region to be profuse enough to be life-threatening, it is still necessary to control such bleeding. Severe bleeding occurs as the result of facial trauma in 1–11% of patients, and the origin of this bleeding can be difficult to locate. Nasal packing can be used to control nose bleeds and hematomas that may form on the septum between the nostrils. Such hematomas need to be drained. Mild nasal fractures need nothing more than ice and pain killers, while breaks with severe deformities or associated lacerations may need further treatment, such as moving the bones back into alignment and antibiotic treatment.
Treatment aims to repair the face's natural bony architecture and to leave as little apparent trace of the injury as possible. Fractures may be repaired with metal plates and screws. They may also be wired into place. Bone grafting is another option to repair the bone's architecture, to fill out missing sections, and to provide structural support. Medical literature suggests that early repair of facial injuries, within hours or days, results in better outcomes for function and appearance.
Surgical specialists who commonly treat specific aspects of facial trauma are oral and maxillofacial surgeons. These surgeons are trained in the comprehensive management of trauma to the lower, middle and upper face and have to take written and oral board examinations covering the management of facial injuries.
Non-displaced fractures usually heal without intervention. Patients with basilar skull fractures are especially likely to get meningitis. Unfortunately, the efficacy of prophylactic antibiotics in these cases is uncertain.
Surgery is indicated if there is enophthalmos greater than 2 mm on imaging, Double vision on primary or inferior gaze, entrapment of extraocular muscles, or the fracture involves greater than 50% of the orbital floor. When not surgically repaired, most blowout fractures heal spontaneously without significant consequence.
Surgical repair of a "blowout" is rarely undertaken immediately; it can be safely postponed for up to two weeks, if necessary, to let the swelling subside. Surgery to place an orbital implant leaves little or no scarring and the recovery period is usually brief. Hopefully, the surgery will provide a permanent cure, but sometimes it provides only partial relief from double vision or a sunken eye. Reconstruction is usually performed with a titanium mesh or porous polyethylene through a transconjunctival or subciliary incision. More recently, there has been success with endoscopic, or minimally invasive, approaches.
Treatment is surgical, and usually is able to be performed once life-threatening injuries are stabilized, to allow the patient to survive the general anesthesia needed for invasive orthopedic restructuring. First a "frontal bar" is used, which refers to the thickened frontal bone above the frontonasal sutures and the superior orbital rim. The facial bones are suspended from the bar by open reduction and internal fixation with titanium plates and screws, and each fracture is fixed, first at its superior attachment to the bar, then at the inferior attachment to the displaced bone. For stability, the zygomaticofrontal suture is usually replaced first, and the palate and alveolar ridge are usually fixed last. Finally, after the horizontal and vertical maxillary buttresses are stabilized, the orbital fractures are fixed last.
Management depends on the severity of the fracture. An undisplaced fracture may be treated with a cast alone. The cast is applied with the distal fragment in palmar flexion and ulnar deviation. A fracture with mild angulation and displacement may require closed reduction. There is some evidence that immobilization with the wrist in dorsiflexion as opposed to palmarflexion results in less redisplacement and better functional status. Significant angulation and deformity may require an open reduction and internal fixation or external fixation. The volar forearm splint is best for temporary immobilization of forearm, wrist and hand fractures, including Colles fracture.
There are several established instability criteria:
dorsal tilt >20°,
comminuted fracture,
abruption of the ulnar styloid process,
intraarticular displacement >1mm,
loss of radial height >2mm.
A higher amount of instability criteria increases the likelihood of operative treatment.
Treatment modalities differ in the elderly.
Repeat Xrays are recommended at one, two, and six weeks to verify proper healing.
Treatment is aimed at achieving a stable, aligned, mobile and painless joint and to minimize the risk of post-traumatic osteoarthritis. To achieve this operative or non-operative treatment plans are considered by physicians based on criteria such as patient characteristics, severity, risk of complications, fracture depression and displacement, degree of injury to ligaments and menisci, vascular and neurological compromise.
For early management, traction should be performed early in ward. It can either be Skin Traction or Skeletal Traction. Depends on the body weight of patient and stability of the joint. Schantz pin insertion over the Calcaneum should be done from Medial to lateral side.
Later when condition is stable. Definitive plan would be Buttress Plating and Lag Screw fixation.