Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment consists of vitamin K supplementation. This is often given prophylactically to newborns shortly after birth.
If treatment is initiated early in disease the neurologic sequelae may be reversed and further deterioration can be prevented.
Treatment normally consists of rigorous dieting, involving massive amounts of vitamin E. Vitamin E helps the body restore and produce lipoproteins, which people with abetalipoprotenimia usually lack. Vitamin E also helps keep skin and eyes healthy; studies show that many affected males will have vision problems later on in life. Developmental coordination disorder and muscle weakness are usually treated with physiotherapy or occupational therapy. Dietary restriction of triglycerides has also been useful.
The prevalence of vitamin K deficiency varies by geographic region. For infants in the United States, vitamin K deficiency without bleeding may occur in as many as 50% of infants younger than 5 days old, with the classic hemorrhagic disease occurring in 0.25-1.7% of infants. Therefore, the Committee on Nutrition of the American Academy of Pediatrics recommends that 0.5 to 1.0 mg Vitamin K be administered to all newborns shortly after birth.
Postmenopausal and elderly women in Thailand have high risk of Vitamin K deficiency, compared with the normal value of young, reproductive females.
Current dosage recommendations for Vitamin K may be too low. The deposition of calcium in soft tissues, including arterial walls, is quite common, especially in those suffering from atherosclerosis, suggesting that Vitamin K deficiency is more common than previously thought.
Because colonic bacteria synthesize a significant portion of the Vitamin K required for human needs, individuals with disruptions to or insufficient amounts of these bacteria can be at risk for Vitamin K deficiency. Newborns, as mentioned above, fit into this category, as their colons are frequently not adequately colonized in the first five to seven days of life. (Consumption of the mother's milk can undo this temporary problem.) Another at-risk population comprises those individuals on any sort of long-term antibiotic therapy, as this can diminish the population of normal gut flora.
Treatment of LPLD has two different objectives: immediate prevention of pancreatitis attacks and long term reduction of cardiovascular disease risk. Treatment is mainly based on medical nutrition therapy to maintain plasma triglyceride concentration below 11,3 mmol/L (1000 mg/dL). Maintenance of triglyceride levels below 22,6 mmol/L (2000 mg/dL) prevents in general from recurrent abdominal pain.
Strict low fat diet and avoidance of simple carbohydrates
Restriction of dietary fat to not more than 20 g/day or 15% of the total energy intake is usually sufficient to reduce plasma triglyceride concentration, although many patients report that to be symptom free a limit of less than 10g/day is optimal. Simple carbohydrates should be avoided as well. Medium-chain triglycerides can be used for cooking, because they are absorbed into the portal vein without becoming incorporated into chylomicrons. Fat-soluble vitamins A, D, E, and K, and minerals should be supplemented in patients with recurrent pancreatitis since they often have deficiencies as a result of malabsorption of fat. However, the diet approach is difficult to sustain for many of the patients.
Lipid lowering drugs
Lipid-lowering agents such as fibrates and omega-3-fatty acids can be used to lower TG levels in LPLD, however those drugs are very often not effective enough to reach treatment goals in LPLD patients. Statins should be considered to lower elevated non-HDL-Cholesterol.
Additional measures are avoidance of agents known to increase endogenous triglyceride levels, such as alcohol, estrogens, diuretics, isotretinoin, anidepressants (e.g. sertraline) and b-adrenergic blocking agents.
Gene therapy
In 2012, the European Commission approved alipogene tiparvovec (Glybera), a gene therapy for adults diagnosed with familial LPLD (confirmed by genetic testing) and suffering from severe or multiple pancreatitis attacks despite dietary fat restrictions. It was the first gene therapy to receive marketing authorization in Europe; it was priced at about $1 million per treatment, and as of 2016, only one person had been treated with it.
Other therapeutic interventions include:
- ethosuximide and other anticonvulsant drugs
- GHB receptor antagonist NCS-382
- GABA receptor modulators
- uridine
- acamprosate
- dopaminergic agents
- dextromethorphan
- glutamine
- antioxidants
- Lamotrigine
The GABA(B) receptor antagonist, SGS-742, is currently being tested as a potential therapeutic in an NIH phase II clinical trial (NCT02019667).
Treatment including addressing the cause, such as improving the diet, treating diarrhea, or stopping an offending medication. People without a significant source of potassium loss and who show no symptoms of hypokalemia may not require treatment.
Mild hypokalemia (>3.0 meq/l) may be treated with oral potassium chloride supplements (Klor-Con, Sando-K, Slow-K). As this is often part of a poor nutritional intake, potassium-containing foods may be recommended, such as leafy green vegetables, avocados, tomatoes, coconut water, citrus fruits, oranges, or bananas. Both dietary and pharmaceutical supplements are used for people taking diuretic medications.
Severe hypokalemia (<3.0 meq/l) may require intravenous supplementation. Typically, a saline solution is used, with 20–40 meq/l KCl per liter over 3–4 hours. Giving IV potassium at faster rates (20–25 meq/hr) may predispose to ventricular tachycardias and requires intensive monitoring. A generally safe rate is 10 meq/hr. Even in severe hypokalemia, oral supplementation is preferred given its safety profile. Sustained-release formulations should be avoided in acute settings.
Difficult or resistant cases of hypokalemia may be amenable to a potassium-sparing diuretic, such as amiloride, triamterene, spironolactone, or eplerenone. Concomitant hypomagnesemia will inhibit potassium replacement, as magnesium is a cofactor for potassium uptake.
When replacing potassium intravenously, infusion by a central line is encouraged to avoid the frequent occurrence of a burning sensation at the site of a peripheral infusion, or the rare occurrence of damage to the vein. When peripheral infusions are necessary, the burning can be reduced by diluting the potassium in larger amounts of fluid, or mixing 3 ml of 1% lidocaine to each 10 meq of KCl per 50 ml of fluid. The practice of adding lidocaine, however, raises the likelihood of serious medical errors.
Primary prophylaxis with low-molecular weight heparin, heparin, or warfarin is often considered in known familial cases. Anticoagulant prophylaxis is given to all who develop a venous clot regardless of underlying cause.
Studies have demonstrated an increased risk of recurrent venous thromboembolic events in patients with protein C deficiency. Therefore, long-term anticoagulation therapy with warfarin may be considered in these patients.
Homozygous protein C defect constitutes a potentially life-threatening disease, and warrants the use of supplemental protein C concentrates.
Liver transplant may be considered curative for homozygous protein C deficiency.
The GABA antagonist CGP-35348 (3-amino-propyl-(diethoxymethyl) phosphinic acid) has been used in Aldh5a1-/- mice with strong results. It has shown to reduce the frequency of absence seizures, though there have been some cases in which it worsened convulsive seizures.
Menaquinone (vitamin K), but not phylloquinone (vitamin K), intake is associated with reduced risk of CHD mortality, all-cause mortality and severe aortic calcification.
Several medical treatments shift potassium ions from the bloodstream into the cellular compartment, thereby reducing the risk of complications. The effect of these measures tends to be short-lived, but may temporize the problem until potassium can be removed from the body.
- Insulin (e.g. intravenous injection of 10-15 units of regular insulin along with 50 ml of 50% dextrose to prevent the blood sugar from dropping too low) leads to a shift of potassium ions into cells, secondary to increased activity of the sodium-potassium ATPase. Its effects last a few hours, so it sometimes must be repeated while other measures are taken to suppress potassium levels more permanently. The insulin is usually given with an appropriate amount of glucose to prevent hypoglycemia following the insulin administration.
- Salbutamol (albuterol), a β-selective catecholamine, is administered by nebulizer (e.g. 10–20 mg). This medication also lowers blood levels of K by promoting its movement into cells.
- Sodium bicarbonate may be used with the above measures if it is believed the person has metabolic acidosis.
Severe cases require hemodialysis or hemofiltration, which are the most rapid methods of removing potassium from the body. These are typically used if the underlying cause cannot be corrected swiftly while temporizing measures are instituted or there is no response to these measures.
Potassium can bind to agents in the gastrointestinal tract. Sodium polystyrene sulfonate with sorbitol (Kayexalate) has been approved for this use and can be given by mouth or rectally. However, careful clinical trials to demonstrate the effectiveness of sodium polystyrene are lacking, and use of sodium polystyrene sulfonate, particularly if with high sorbitol content, is uncommonly but convincingly associated with colonic necrosis. There are no systematic studies (>6 months) looking at the long-term safety of this medication. Another medication by the name of patiromer was approved in 2015.
Loop diuretics (furosemide, bumetanide, torasemide) and thiazide diuretics (e.g., chlorthalidone, hydrochlorothiazide, or chlorothiazide) can increase kidney potassium excretion in people with intact kidney function.
Fludrocortisone, a synthetic mineralocorticoid, can also increase potassium excretion by the kidney in patients with functioning kidneys. Trials of fludrocortisone in patients on dialysis have shown it to be ineffective.
Patiromer is a selective sorbent that is taken by mouth and works by binding free potassium ions in the gastrointestinal tract and releasing calcium ions for exchange, thus lowering the amount of potassium available for absorption into the bloodstream and increasing the amount that is excreted via the feces. The net effect is a reduction of potassium levels in the blood serum.
In terms of treatment, acute hypoglycemia is reversed by raising the blood glucose, but in most forms of congenital hyperinsulinism hypoglycemia recurs and the therapeutic effort is directed toward preventing falls and maintaining a certain glucose level. Some of the following measures are often tried:
Corn starch can be used in feeding; unexpected interruptions of continuous feeding regimens can result in sudden, hypoglycemia, gastrostomy tube insertion (requires a minor surgical procedure) is used for such feeding.Prolonged glucocorticoid use incurs the many unpleasant side effects of Cushing's syndrome, while diazoxide can cause fluid retention requiring concomitant use of a diuretic, and prolonged use causes hypertrichosis. Diazoxide works by opening the K channels of the beta cells. Octreotide must be given by injection several times a day or a subcutaneous pump must be inserted every few days, octreotide can cause abdominal discomfort and responsiveness to octreotide often wanes over time. Glucagon requires continuous intravenous infusion, and has a very short "half life".
Nifedipine is effective only in a minority, and dose is often limited by hypotension.
Pancreatectomy (removal of a portion or nearly all of the pancreas) is usually a treatment of last resort when the simpler medical measures fail to provide prolonged normal blood sugar levels. For some time, the most common surgical procedure was removal of almost all of the pancreas, this cured some infants but not all. Insulin-dependent diabetes mellitus commonly develops, though in many cases it occurs many years after the pancreatectomy.Later it was discovered that a sizeable minority of cases of mutations were focal, involving overproduction of insulin by only a portion of the pancreas. These cases can be cured by removing much less of the pancreas, resulting in excellent outcomes with no long-term problems.
The affected animal should be left in the pasture, and not forced to come back to stall because excitation can darken the prognosis, even after adequate treatment.
Intravenous mixed calcium and magnesium injection are used. Subcutaneous injection of magnesium sulfate (200 ml of 50% solution) is also recommended.
Magnesium supplements are used to prevent the disease when ruminants, for obvious economic reasons, must have access to dangerous pastures.
Treatment is directed largely towards management of underlying cause:
- Replacement of nutrients, electrolytes and fluid may be necessary. In severe deficiency, hospital admission may be required for nutritional support and detailed advice from dietitians. Use of enteral nutrition by naso-gastric or other feeding tubes may be able to provide sufficient nutritional supplementation. Tube placement may also be done by percutaneous endoscopic gastrostomy, or surgical jejunostomy. In patients whose intestinal absorptive surface is severely limited from disease or surgery, long term total parenteral nutrition may be needed.
- Pancreatic enzymes are supplemented orally in pancreatic insufficiency.
- Dietary modification is important in some conditions:
- Gluten-free diet in coeliac disease.
- Lactose avoidance in lactose intolerance.
- Antibiotic therapy to treat Small Bowel Bacterial overgrowth.
- Cholestyramine or other bile acid sequestrants will help reducing diarrhoea in bile acid malabsorption.
Precise diagnosis by measuring proteins induced by vitamin k absence (PIVKA).
But this is usually not required.
With few exceptions, like some vitamins from B-complex, hypervitaminosis usually occurs more with fat-soluble vitamins (D, E, K and A or 'DEKA'), which are stored in the liver and fatty tissues of the body. These vitamins build up and remain for a longer time in the body than water-soluble vitamins.
Conditions include:
- Hypervitaminosis A
- Hypervitaminosis D
- Hypervitaminosis E
- Hypervitaminosis K, unique as the true upper limit is less clear as is its bioavailability.
According to Williams' Essentials of Diet and Nutrition Therapy it is difficult to set a DRI for vitamin K because part of the requirement can be met by intestinal bacterial synthesis.
- Reliable information is lacking as to the vitamin K content of many foods or its bioavailability. With this in mind the Expert Committee established an AI rather than an RDA.
- This RDA (AI for men age 19 and older is 120 µg/day, AI for women is 90 µg/day) is adequate to preserve blood clotting, but the correct intake needed for optimum bone health is unknown. Toxicity has not been reported.
High-dosage A; high-dosage, slow-release vitamin B; and very high-dosage vitamin B alone (i.e. without vitamin B complex) hypervitaminoses are sometimes associated with side effects that usually rapidly cease with supplement reduction or cessation.
High doses of mineral supplements can also lead to side effects and toxicity. Mineral-supplement poisoning does occur occasionally, most often due to excessive intake of iron-containing supplements.
A vitamin deficiency can cause a disease or syndrome known as an avitaminosis or hypovitaminosis. This usually refers to a long-term deficiency of a vitamin. When caused by inadequate nutrition it can be classed as a "primary deficiency", and when due to an underlying disorder such as malabsorption it can be classed as a "secondary deficiency". An underlying disorder may be metabolic as in a defect converting tryptophan to niacin. It can also be the result of lifestyle choices including smoking and alcohol consumption.
Examples are vitamin A deficiency, folate deficiency, scurvy, vitamin D deficiency, vitamin E deficiency, and vitamin K deficiency. In the medical literature, any of these may also be called by names on the pattern of "hypovitaminosis" or "avitaminosis" + "[letter of vitamin]", for example, hypovitaminosis A, hypovitaminosis C, hypovitaminosis D.
Conversely hypervitaminosis is the syndrome of symptoms caused by over-retention of fat-soluble vitamins in the body.
- Vitamin A deficiency can cause keratomalacia.
- Thiamine (vitamin B1) deficiency causes beriberi and Wernicke–Korsakoff syndrome.
- Riboflavin (vitamin B2) deficiency causes ariboflavinosis.
- Niacin (vitamin B3) deficiency causes pellagra.
- Pantothenic acid (vitamin B5) deficiency causes chronic paresthesia.
- Vitamin B6
- Biotin (vitamin B7) deficiency negatively affects fertility and hair/skin growth. Deficiency can be caused by poor diet or genetic factors (such as mutations in the BTD gene, see multiple carboxylase deficiency).
- Folate (vitamin B9) deficiency is associated with numerous health problems. Fortification of certain foods with folate has drastically reduced the incidence of neural tube defects in countries where such fortification takes place. Deficiency can result from poor diet or genetic factors (such as mutations in the MTHFR gene that lead to compromised folate metabolism).
- Vitamin B12 (cobalamin) deficiency can lead to pernicious anemia, megaloblastic anemia, subacute combined degeneration of spinal cord, and methylmalonic acidemia among other conditions.
- Vitamin C (ascorbic acid) short-term deficiency can lead to weakness, weight loss and general aches and pains. Longer-term depletion may affect the connective tissue. Persistent vitamin C deficiency leads to scurvy.
- Vitamin D (cholecalciferol) deficiency is a known cause of rickets, and has been linked to numerous health problems.
- Vitamin E deficiency causes nerve problems due to poor conduction of electrical impulses along nerves due to changes in nerve membrane structure and function.
- Vitamin K (phylloquinone or menaquinone) deficiency causes impaired coagulation and has also been implicated in osteoporosis
Acute hypoglycemia is reversed by raising the blood glucose. Glucagon should be injected intramuscularly or intravenously, or dextrose can be infused intravenously to raise the blood glucose. Oral administration of glucose can worsen the outcome, as more insulin is eventually produced. Most people recover fully even from severe hypoglycemia after the blood glucose is restored to normal. Recovery time varies from minutes to hours depending on the severity and duration of the hypoglycemia. Death or permanent brain damage resembling stroke can occur rarely as a result of severe hypoglycemia. See hypoglycemia for more on effects, recovery, and risks.
Further therapy and prevention depends upon the specific cause.
Most hypoglycemia due to excessive insulin occurs in people who take insulin for type 1 diabetes. Management of this hypoglycemia is sugar or starch by mouth (or in severe cases, an injection of glucagon or intravenous dextrose). When the glucose has been restored, recovery is usually complete. Prevention of further episodes consists of maintaining balance between insulin, food, and exercise. Management of hypoglycemia due to treatment of type 2 diabetes is similar, and the dose of the oral hypoglycemic agent may need to be reduced. Reversal and prevention of hypoglycemia is a major aspect of the management of type 1 diabetes.
Hypoglycemia due to drug overdose or effect is supported with extra glucose until the drugs have been metabolized. The drug doses or combination often needs to be altered.
Hypoglycemia due to a tumor of the pancreas or elsewhere is usually curable by surgical removal. Most of these tumors are benign. Streptozotocin is a specific beta cell toxin and has been used to treat insulin-producing pancreatic carcinoma.
Hyperinsulinism due to diffuse overactivity of beta cells, such as in many of the forms of congenital hyperinsulinism, and more rarely in adults, can often be treated with diazoxide or a somatostatin analog called octreotide. Diazoxide is given by mouth, octreotide by injection or continuous subcutaneous pump infusion. When congenital hyperinsulinism is due to focal defects of the insulin-secretion mechanism, surgical removal of that part of the pancreas may cure the problem. In more severe cases of persistent congenital hyperinsulinism unresponsive to drugs, a near-total pancreatectomy may be needed to prevent continuing hypoglycemia. Even after pancreatectomy, continuous glucose may be needed in the form of gastric infusion of formula or dextrose.
High dose glucocorticoid is an older treatment used for presumptive transient hyperinsulinism but incurs side effects with prolonged use.
Complex regulatory mechanisms control metabolism. Recent epidemiologic evidence suggests that there is a narrow range of vitamin D levels in which vascular function is optimized. Levels above or below this range increased mortality. Animal research suggests that both excess and deficiency of vitamin D appears to cause abnormal functioning and premature aging.
Treatment is almost always aimed to control hemorrhages, treating underlying causes, and taking preventative steps before performing invasive surgeries.
Hypoprothrombinemia can be treated with periodic infusions of purified prothrombin complexes. These are typically used as treatment methods for severe bleeding cases in order to boost clotting ability and increasing levels of vitamin K-dependent coagulation factors.
1. A known treatment for hypoprothrombinemia is menadoxime.
2. Menatetrenone was also listed as a Antihaemorrhagic vitamin.
3. 4-Amino-2-methyl-1-naphthol (Vitamin K5) is another treatment for hypoprothrombinemia.
1. Vitamin K forms are administered orally or intravenously.
4. Other concentrates include Proplex T, Konyne 80, and Bebulin VH.
Fresh Frozen Plasma infusion (FFP) is a method used for continuous bleeding episodes, every 3-5 weeks for mention.
1. Used to treat various conditions related to low blood clotting factors.
2. Administered by intravenous injection and typically at a 15-20 ml/kg/dose.
3. Can be used to treat acute bleeding.
Sometimes, underlying causes cannot be controlled or determined, so management of symptoms and bleeding conditions should be priority in treatment.
Invasive options, such as surgery or clotting factor infusions, are required if previous methods do not suffice. Surgery is to be avoided, as it causes significant bleeding in patients with hypoprothrombinemia.
Prognosis for patients varies and is dependent on severity of the condition and how early the treatment is managed.
1. With proper treatment and care, most people go on to live a normal and healthy life.
2. With more severe cases, a hematologist will need to be seen throughout the patient's life in order to deal with bleeding and continued risks.
There are several treatments available for bleeding due to factor X deficiency, however a specifi FX concentrate is not available (2009).
1. Prothrombin complex concentrate (PCC) supplies FX with a risk of thrombosis.
2. Fresh frozen plasma (FFP): This is relatively inexpensive and readily available. While effective this treatment carries a risk of blood-borne viruses and fluid overload.
3. If vitamin K levels are low, vitamin K can be supplied orally or parenterally.
Treatment of FX deficiency in amyloidosis may be more complex and involve surgery (splenectomy) and chemotherapy.
There are several treatments available for factor VII deficiency; they all replace deficient FVII.
1. Recombinant FVIIa concentrate (rFVIIa) is a recombinant treatment that is highly effective and has no risk of fluid overload or viral disease. It may be the optimal therapy.
2. Plasma derived Factor VII concentrate (pdFVII) : This treatment is suitable for surgery but can lead to thrombosis. It is virus attenuated.
3. Prothrombin complex concentrate (PCC) containing factor VII: this treatment is suitable for surgery, but has a risk of thrombosis. It is virus attenuated.
4. Fresh frozen plasma (FFP): This is relatively inexpensive and readily available. While effective this treatment carries a risk of blood-borne viruses and fluid overload.
Hypervitaminosis is a condition of abnormally high storage levels of vitamins, which can lead to toxic symptoms. Specific medical names of the different conditions are derived from the vitamin involved: an excess of vitamin A, for example, is called hypervitaminosis A.
Hypervitaminoses are primarily caused by fat-soluble vitamins (D, E, K and A), as these are stored by the body for longer period than the water-soluble vitamins.
Generally, toxic levels of vitamins stem from high supplement intake and not from natural food. Toxicities of fat-soluble vitamins can also be caused by a large intake of highly fortified foods, but natural food rarely deliver dangerous levels of fat-soluble vitamins. The Dietary Reference Intake recommendations from the United States Department of Agriculture define a "tolerable upper intake level" for most vitamins.