Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment of condylar resorption is controversial. Orthognathic surgery may be done to reconstruct and stabilize the condyles and disc of the temporomandibular joint. Anti-infammatory medication is also used to slow the resorption process. Orthodontics may be used to treat the occlusion. Arthrocentesis, and arthroscopic surgery are also sometimes used to treat disc displacement and other symptoms.
Generally buccal exostoses require no treatment. However, they may be easily traumatized causing ulceration, or may contribute to periodontal disease if they become too large, or can interfere with wearing a denture (false teeth). If they are creating problems, they are generally removed with a simple surgical procedure under local anesthetic.
The treatment should be tailored to the cause involved and the severity of the disease process. With oral osteoporosis the emphasis should be on good nutrient absorption and metabolic wastes elimination through a healthy gastro-intestinal function, effective hepatic metabolism of toxicants such as exogenous estrogens, endogenous acetaldehyde and heavy metals, a balanced diet, healthy lifestyle, assessment of factors related to potential coagulopathies, and treatment of periodontal diseases and other oral and dental infections.
In cases of advanced oral ischaemic osteoporosis and/or ONJ that are not bisphosphonates related, clinical evidence has shown that surgically removing the damaged marrow, usually by curettage and decortication, will eliminate the problem (and the pain) in 74% of patients with jaw involvement. Repeat surgeries, usually smaller procedures than the first, may be required. Almost a third of jawbone patients will need surgery in one or more other parts of the jaws because the disease so frequently present multiple lesions, i.e., multiple sites in the same or similar bones, with normal marrow in between. In the hip, at least half of all patients will get the disease in the opposite hip over time; this pattern occurs in the jaws as well. Recently, it has been found that some osteonecrosis patients respond to anticoagulation therapies alone. The earlier the diagnosis the better the prognosis. Research is ongoing on other non-surgical therapeutic modalities that could alone or in combination with surgery further improve the prognosis and reduce the morbidity of ONJ. A greater emphasis on minimizing or correcting known causes is necessary while further research is conducted on chronic ischaemic bone diseases such as oral osteoporosis and ONJ.
In patients with bisphosphonates-associated ONJ, the response to surgical treatment is usually poor. Conservative debridement of necrotic bone, pain control, infection management, use of antimicrobial oral rinses, and withdrawal of bisphosphonates are preferable to aggressive surgical measures for treating this form of ONJ. Although an effective treatment for bisphosphonate-associated bone lesions has not yet been established, and this is unlikely to occur until this form of ONJ is better understood, there have been clinical reports of some improvement after 6 months or more of complete cessation of bisphosphonate therapy.
Because Cherubism changes and improves over time the treatment should be individually determined. Generally moderate cases are watched until they subside or progress into the more severe range. Severe cases may require surgery to eliminate bulk cysts and fibrous growth of the maxilla and mandible. Surgical bone grafting of the cranial facial bones may be successful on some patients. Surgery is preferred for patients ages 5 to 15. Special consideration should be taken when operating on the face to avoid the marginal mandibular branch of the facial nerve as well as the zygomatic branch of the facial nerve. Unintentional damage to these nerves can decrease muscle strength in the face and mandible region. Orthodontic treatment is generally required to avoid permanent dental problems arising from malocclusive bite, misplaced, and unerupted permanent teeth. Orthodontic treatment may be used to erupt permanent teeth that have been unable to descend due to lesions and cysts being in their path of eruption. Patients with orbital issues of diplopia, eye proptosis, and visual loss will require ophthalmologic treatment.
The most common treatment for mandibular prognathism is a combination of orthodontics and orthognathic surgery. The orthodontics can involve braces, removal of teeth, or a mouthguard.
The surgery required has led, in some cases, to identity crises in patients, whereby the new facial structure has a negative impact mentally on how the patients perceive themselves.
Where there is an operculum of gingiva overlying the tooth that has become infected it can be treated with local cleaning, an antiseptic rinse of the area and antibiotics if severe. Definitive treatment can be excision of the tissue, however, recurrence of these infections is high. Pericoronitis, while a small area of tissue, should be viewed with caution, because it lies near the anatomic planes of the neck and can progress to life-threatening neck infections.
Crowding of the teeth is treated with orthodontics, often with tooth extraction, clear aligners, or dental braces, followed by growth modification in children or jaw surgery (orthognathic surgery) in adults. Surgery may be required on rare occasions. This may include surgical reshaping to lengthen or shorten the jaw (orthognathic surgery). Wires, plates, or screws may be used to secure the jaw bone, in a manner similar to the surgical stabilization of jaw fractures. Very few people have "perfect" alignment of their teeth. However, most problems are very minor and do not require treatment.
A 2013 Cochrane review assessed clinical studies on surgical (open reduction) and non-surgical (closed reduction) management of mandible fractures that do not involve the condyle. The review found insufficient evidence to recommend the effectiveness of any single intervention.
Medication is the main method of managing pain in TMD, mostly because there is little if any evidence of the effectiveness of surgical or dental interventions. Many drugs have been used to treat TMD pain, such as analgesics (pain killers), benzodiazepines (e.g. clonazepam, prazepam, diazepam), anticonvulsants (e.g. gabapentin), muscle relaxants (e.g. cyclobenzaprine), and others. Analgesics that have been studied in TMD include non-steroidal anti-inflammatory drugs (e.g. piroxicam, diclofenac, naproxen) and cyclo-oxygenase-2 inhibitors (e.g. celecoxib). Topical methyl salicylate and topical capsaicin have also been used. Other drugs that have been described for use in TMD include glucosamine hydrochloride/chondroitin sulphate and propranolol. Despite many randomized control trials being conducted on these commonly used medications for TMD a systematic review carried out in 2010 concluded that there was insufficient evidence to support or not to support the use of these drugs in TMD. Low-doses of anti-muscarinic tricyclic antidepressants such as amitriptyline, or nortriptyline have also been described. In a subset of people with TMD who are not helped by either noninvasive and invasive treatments, long term use of opiate analgesics has been suggested, although these drugs carry a risk of drug dependence and other side effects. Examples include morphine, fentanyl, oxycodone, tramadol, hydrocodone, and methadone.
Botulinum toxin solution ("Botox") is sometimes used to treat TMD. Injection of botox into the lateral pterygoid muscle has been investigated in multiple randomized control trials, and there is evidence that it is of benefit in TMD. It is theorized that spasm of lateral pterygoid causes anterior disc displacement. Botulinum toxin causes temporary muscular paralysis by inhibiting acetylcholine release at the neuromuscular junction. The effects usually last for a period of months before they wear off. Complications include the creation of a "fixed" expression due to diffusion of the solution and subsequent involvement of the muscles of facial expression, which lasts until the effects of the botox wear off. Injections of local anesthetic, sometimes combined with steroids, into the muscles (e.g. the temoralis muscle or its tendon) are also sometimes used. Local anesthetics may provide temporary pain relief, and steroids inhibit pro-inflammatory cytokines. Steroids and other medications are sometimes injected directly into the joint (See Intra-articular injections).
Treatment requires treating the underlying condition with dental treatments, physical therapy, and passive range of motion devices. Additionally, control of symptoms with pain medications (NSAIDs), muscle relaxants, and warm compresses may be used.
Splints have been used.
Wisdom teeth removal (extraction) is the most common treatment for impacted wisdom teeth. In the US, 10 million wisdom teeth are removed annually. The general agreement for wisdom tooth removal is the presence of disease or symptoms related to that tooth.
The procedure, depending on the depth of the impaction and angle of the tooth, is to create an incision in the mucosa of the mouth, remove bone of the mandible or maxilla adjacent the tooth, section the tooth and extract it in pieces. This can be completed under local anaesthetic, sedation or general anaesthetic.
The best treatment for condylar fractures is controversial. There are two main options, namely closed reduction or open reduction and fixation. Closed reduction may involve intermaxillary fixation, where the jaws are splinted together in the correct position for a period of weeks. Open reduction involves surgical exposure of the fracture site, which can be carried out via incisions within the mouth or incisions outside the mouth over the area of the condyle. Open reduction is sometimes combined with use of an endoscope to aid visualization of fracture site. Although closed reduction carries a risk of the bone healing out of position, with consequent alteration of the bite or the creation of facial asymmetry, it does not risk temporary damage to the facial nerve or result in any facial scar that accompanies open reduction. A systematic review was unable to find sufficient evidence of the superiority of one method over another in the management of condylar fractures. Paediatric condylar fractures are especially problematic, owing to the remaining growth potential and possibility of ankylosis of the joint. Early mobilization is often recommended as in the Walker protocol.
Succinyl choline, phenothiazines and tricyclic antidepressants causes trismus as a secondary effect. Trismus can be seen as an extra-pyramidal side-effect of metoclopromide, phenothiazines and other medications.
TMD can be difficult to manage, and since the disorder transcends the boundaries between several health-care disciplines — in particular, dentistry and neurology, the treatment may often involve multiple approaches and be multidisciplinary. Most who are involved in treating and, researching TMD now agree that any treatment carried out should not permanently alter the jaw or teeth, and should be reversible. To avoid permanent change, over-the-counter or prescription pain medications may be prescribed.
Because this genetic anomaly is genetically linked, genetic counseling may be the only way to decrease occurrences of Cherubism. The lack of severe symptoms in the parents may be the cause of failure in recognizing the disorder. The optimal time to be tested for mutations is prior to having children. The disorder results from a genetic mutation, and this gene has been found to spontaneously mutate. Therefore, there may be no prevention techniques available.
In disease states, maxillary prognathism is associated with Cornelia de Lange syndrome; however, so-called false maxillary prognathism, or more accurately, retrognathism, where there is a lack of growth of the mandible, is by far a more common condition.
Prognathism, if not extremely severe, can be treated in growing patients with orthodontic functional or orthopaedic appliances. In adult patients this condition can be corrected by means of a combined surgical/orthodontic treatment, where most of the time a mandibular advancement is performed. The same can be said for mandibular prognathism.
Most temporomandibular disorders (TMDs) are self-limiting and do not get worse. Simple treatment, involving self-care practices, rehabilitation aimed at eliminating muscle spasms, and restoring correct coordination, is all that is required. Nonsteroidal anti inflammatory analgesics (NSAIDs) should be used on a short-term, regular basis and not on an as needed basis. On the other hand, treatment of chronic TMD can be difficult and the condition is best managed by a team approach; the team consists of a primary care physician, a dentist, a physiotherapist, a psychologist, a pharmacologist, and in small number of cases, a surgeon. The different modalities include patient education and self-care practices, medication, physical therapy, splints, psychological counseling, relaxation techniques, biofeedback, hypnotherapy, acupuncture, and arthrocentesis.
As with most dislocated joints, a dislocated jaw can usually be successfully positioned into its normal position by a trained medical professional. Attempts to readjust the jaw without the assistance of a medical professional could result in worsening of the injury. The health care provider may be able to set it back into the correct position by manipulating the area back into its proper position. Numbing medications such as general anesthetics, muscle relaxants, or in some cases sedation, may be needed to relax the strong jaw muscle. In more severe cases, surgery may be needed to reposition the jaw, particularly if repeated jaw dislocations have occurred.
Also called myofunctional therapy, the basic treatment aims of orofacial myofunctional therapist is to reeducate the movement of muscles, restore correct swallowing patterns, and establish adequate labial-lingual postures. An interdisciplinary nature of treatment is always desirable to reach functional goals in terms of swallowing, speech, and other esthetic factors. A team approach has been shown to be effective in correcting orofacial myofunctional disorders. The teams include an orthodontist, dental hygienist, certified orofacial myologist, general dentist, otorhinolaryngologist, and a speech-language pathologist.
A related condition, bisphosphonate-associated osteonecrosis of the jaw (BON), has been described as a side-effect of amino-bisphosphonates, a class of phosphorus-based drugs that inhibit bone resorption and are used widely for treating osteoporosis, bone disease in cancer and some other conditions.
BON, sometimes called "bis-phossy jaw",
is primarily associated with the use of intravenous bisphosphonates in the treatment of cancer. The percentage incidence of BON from this use is approximately 1000 times higher than the incidence of BON caused by the use of oral bisphosphonates.
The first three cases of bisphosphonate-associated osteonecrosis of the jaw were spontaneously reported to the FDA by an oral surgeon in 2002, with the toxicity being described as a potentially late toxicity of chemotherapy. In 2003 and 2004, three oral surgeons independently reported to the FDA information on 104 cancer patients with bisphosphonate-associated osteonecrosis of the jaw seen in their referral practices in California, Florida, and New York. These case series were published as peer-reviewed articles — two in the "Journal of Oral and Maxillofacial Surgery" and one in the "Journal of Clinical Oncology". Subsequently, numerous instances of persons with this ADR were reported to the manufacturers and to the FDA. By December 2006, 3607 cases of people with this ADR had been reported to the FDA and 2227 cases had been reported to the manufacturer of intravenous bisphosphonates.
The International Myeloma Foundation's web-based survey included 1203 respondents, 904 patients with myeloma and 299 with breast cancer and an estimate that after 36 months, osteonecrosis of the jaw had been diagnosed in 10% of 211 patients on zoledronate and 4% of 413 on pamidronate. A population based study in Germany identified more than 300 cases of osteonecrosis of the jaw, 97% occurring in cancer patients (on high-dose intravenous bisphosphonates) and 3 cases in 780,000 patients with osteoporosis for an incidence of 0.00038%. Time to event ranged from 23–39 months and 42–46 months with high dose intravenous and oral bisphosphonates. A prospective, population based study by Mavrokokki "et al.". estimated an incidence of osteonecrosis of the jaw of 1.15% for intravenous bisphosphonates and 0.04% for oral bisphosphonates. Most cases (73%) were precipitated by dental extractions. In contrast, safety studies sponsored by the manufacturer reported bisphosphonate-associated osteonecrosis of the jaw rates that were much lower.
Although the majority of cases of ONJ have occurred in cancer patients receiving high dose intravenous bisphosphonates, almost 800 cases have been reported in oral bisphosphonate users for osteoporosis or Pagets disease. In terms of severity most cases of ONJ in oral bisphosphonate users are stage 1–2 and tend to progress to resolution with conservative measures such as oral chlorhexidine rinses.
Owing to prolonged embedding of bisphosphonate drugs in the bone tissues, the risk for BRONJ is high even after stopping the administration of the medication for several years.
This form of therapy has been shown to prevent loss of bone mineral density (BMD) as a result of a reduction in bone turnover. However, bone health entails quite a bit more than just BMD. There are many other factors to consider.
In healthy bone tissue there is a homeostasis between bone resorption and bone apposition. Diseased or damaged bone is resorbed through the osteoclasts mediated process while osteoblasts form new bone to replace it, thus maintaining healthy bone density. This process is commonly called remodelling.
However, osteoporosis is essentially the result of a lack of new bone formation in combination with bone resorption in reactive hyperemia, related to various causes and contributing factors, and bisphosphonates do not address these factors at all.
In 2011, a proposal incorporating both the reduced bone turnover and the infectious elements of previous theories has been put forward. It cites the impaired functionality of affected macrophages as the dominant factor in the development of ONJ.
In a systematic review of cases of bisphosphonate-associated ONJ up to 2006, it was concluded that the mandible is more commonly affected than the maxilla (2:1 ratio), and 60% of cases are preceded by a dental surgical procedure. According to Woo, Hellstein and Kalmar, oversuppression of bone turnover is probably the primary mechanism for the development of this form of ONJ, although there may be contributing co-morbid factors (as discussed elsewhere in this article). It is recommended that all sites of potential jaw infection should be eliminated before bisphosphonate therapy is initiated in these patients to reduce the necessity of subsequent dentoalveolar surgery. The degree of risk for osteonecrosis in patients taking oral bisphosphonates, such as alendronate (Fosamax), for osteoporosis is uncertain and warrants careful monitoring. Patients taking dexamethasone and other glucocorticoids are at increased risk.
Matrix metalloproteinase 2 may be a candidate gene for bisphosphonate-associated osteonecrosis of the jaw, since it is the only gene known to be associated with bone abnormalities and atrial fibrillation, both of which are side effects of bisphosphonates.
If there is persistent continuation of inflammation and bleeding, a prescription of antiplaque rinse would be useful.
Treatment for fiddler’s neck is unnecessary if it is painless and shows minimal swelling, particularly since minor cases are taken as a mark of pride. But fiddler’s neck may lead to worse disorders. The primary methods of treatment involve adjustments to playing of the instrument:
- good hygiene for the affected area and for the instrument
- use of a clean cotton cloth that is changed frequently
- use of a shoulder rest to reduce pressure below the jaw
- a suitable chin rest, especially one carved or molded for the individual
- Covering or changing potentially allergenic materials on the instrument.
- shifting the chin rest to the center of the body over the tailpiece
- smoothing coarse surfaces to reduce abrasion
- for males, growing a beard to avoid folliculitis
Surgery is necessary for sialolithiasis, parotid tumors, and cysts. Cervical lymph nodes that are larger than 1 cm must be biopsied. Connective tissue can be removed by excision when a non-inflamed mass is large, and there is generally little recurrence. Infections should be treated conservatively, and causative species should be identified through smear and culture for appropriate antibiotic selection. Reduction of playing time may be helpful for cases without inflammation, but in 30% of cases this did not improve the symptoms.
To establish appropriate alignment and occlusion, the sizes of upper and lower front teeth, or upper and lower teeth in general, need to be proportional. Inter-arch tooth size discrepancy (TSD) is defined as a disproportion in the mesio-distal dimensions of teeth of opposing dental arches, which can be seen in 17% to 30% of orthodontic patients.
Medical management may involve immunosuppressive drugs such as methotrexate, corticosteroids, cyclophosphamide, and azathioprine. No randomized controlled trials have yet been conducted to evaluate such treatments, so the benefits have not been clearly established.
Affected individuals may benefit from autologous fat transfer or fat grafts to restore a more normal contour to the face. However, greater volume defects may require microsurgical reconstructive surgery which may involve the transfer of an island parascapular fasciocutaneous flap or a free flap from the groin, rectus abdominis muscle (Transverse Rectus Abdominis Myocutaneous or "TRAM" flap) or latissimus dorsi muscle to the face. Severe deformities may require additional procedures, such as pedicled temporal fascia flaps, cartilage grafts, bone grafts, orthognathic surgery, and bone distraction. The timing of surgical intervention is controversial; some surgeons prefer to wait until the disease has run its course while others recommend early intervention.