Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Most SVTs are unpleasant rather than life-threatening, although very fast heart rates can be problematic for those with underlying ischemic heart disease or the elderly. Episodes require treatment when they occur, but interval therapy may also be used to prevent or reduce recurrence. While some treatment modalities can be applied to all SVTs, there are specific therapies available to treat some sub-types. Effective treatment consequently requires knowledge of how and where the arrhythmia is initiated and its mode of spread.
SVTs can be classified by whether the AV node is involved in maintaining the rhythm. If so, slowing conduction through the AV node will terminate it. If not, AV nodal blocking maneuvers will not work, although transient AV block is still useful as it may unmask an underlying abnormal rhythm.
Treatment is aimed at slowing the rate by correcting acidosis, correcting electrolytes (especially magnesium and calcium), cooling the patient, and antiarrhythmic medications. Occasionally pacing of the atrium at a rate higher than the JET may allow improved cardiac function by allowing atrial and ventricular synchrony.
A 1994 study at the Adolph Basser Institute of Cardiology found that amiodarone, an antiarrhythmic agent, could be used safely and relatively effectively.
JET occurring after the first six months of life is somewhat more variable, but may still be difficult to control. Treatment of non-post-operative JET is typically with antiarrhythmic medications or a cardiac catheterization with ablation (removal of affected tissue). A cardiac catheterization may be performed to isolate and ablate (burn or freeze) the source of the arrhythmia. This can be curative in the majority of cases. The use of radiofrequency energy is infrequently associated with damage to the normal conduction due to the close proximity to the AV node, the normal conduction tissue. The use of cryotherapy (cold energy) appears to be somewhat safer, and can also be effective for the treatment of JET.
Once an acute arrhythmia has been terminated, ongoing treatment may be indicated to prevent recurrence. However, those that have an isolated episode, or infrequent and minimally symptomatic episodes, usually do not warrant any treatment other than observation.
In general, patients with more frequent or disabling symptoms warrant some form of prevention. A variety of drugs including simple AV nodal blocking agents such as beta-blockers and verapamil, as well as anti-arrhythmics may be used, usually with good effect, although the risks of these therapies need to be weighed against potential benefits.
Radiofrequency ablation has revolutionized the treatment of tachycardia caused by a re-entrant pathway. This is a low-risk procedure that uses a catheter inside the heart to deliver radio frequency energy to locate and destroy the abnormal electrical pathways. Ablation has been shown to be highly effective: around 90% in the case of AVNRT. Similar high rates of success are achieved with AVRT and typical atrial flutter.
Cryoablation is a newer treatment for SVT involving the AV node directly. SVT involving the AV node is often a contraindication for using radiofrequency ablation due to the small (1%) incidence of injuring the AV node, requiring a permanent pacemaker. Cryoablation uses a catheter supercooled by nitrous oxide gas freezing the tissue to −10 °C. This provides the same result as radiofrequency ablation but does not carry the same risk. If you freeze the tissue and then realize you are in a dangerous spot, you can halt freezing the tissue and allow the tissue to spontaneously rewarm and the tissue is the same as if you never touched it. If after freezing the tissue to −10 °C you get the desired result, then you freeze the tissue down to a temperature of −73 °C and you permanently ablate the tissue.
This therapy has further improved the treatment options for people with AVNRT (and other SVTs with pathways close to the AV node), widening the application of curative ablation to young patients with relatively mild but still troublesome symptoms who would not have accepted the risk of requiring a pacemaker.
A surgical treatment for AI is aortic valve replacement; this is currently an open-heart procedure. In the case of severe "acute" aortic insufficiency, all individuals should undergo surgery, if there are no absolute contraindications (for surgery). Individuals with bacteremia with aortic valve endocarditis should not wait for treatment with antibiotics to take effect, given the high mortality associated with the acute AI. Replacement with an aortic valve homograft should be performed if feasible.
Medical therapy of chronic aortic insufficiency that is stable and asymptomatic involves the use of vasodilators. Trials have shown a short term benefit in the use of ACE inhibitors or angiotensin II receptor antagonists, nifedipine, and hydralazine in improving left ventricular wall stress, ejection fraction, and mass. The goal in using these pharmacologic agents is to decrease the afterload so that the left ventricle is somewhat spared. The regurgitant fraction may not change significantly, since the gradient between the aortic and left ventricular pressures is usually fairly low at the initiation of treatment. Other rather conservative medical treatments for stable and asymptomatic cases include low sodium diet, diuretics, digoxin, calcium blockers and avoiding very strenuous activity.
As of 2007, the American Heart Association no longer recommends antibiotics for endocarditis prophylaxis before certain procedures in patients with aortic insufficiency. Antibiotic prophylaxis to prevent endocarditis before gastrointestinal or genitourinary procedures is no longer recommended for any patient with valvular disease. Cardiac stress test is useful in identifying individuals that may be best suited for surgical intervention. Radionuclide angiography is recommended and useful when the systolic wall stress is calculated and combined to the results.
The treatment of mitral insufficiency depends on the acuteness of the disease and whether there are associated signs of hemodynamic compromise.
In acute MI secondary to a mechanical defect in the heart (i.e., rupture of a papillary muscle or chordae tendineae), the treatment of choice is mitral valve surgery. If the patient is hypotensive prior to the surgical procedure, an intra-aortic balloon pump may be placed in order to improve perfusion of the organs and to decrease the degree of MI.
If the individual with acute MI is normotensive, vasodilators may be of use to decrease the afterload seen by the left ventricle and thereby decrease the regurgitant fraction. The vasodilator most commonly used is nitroprusside.
Individuals with chronic MI can be treated with vasodilators as well to decrease afterload. In the chronic state, the most commonly used agents are ACE inhibitors and hydralazine. Studies have shown that the use of ACE inhibitors and hydralazine can delay surgical treatment of mitral insufficiency. The current guidelines for treatment of MI limit the use of vasodilators to individuals with hypertension, however. Any hypertension is treated aggressively, e.g. by diuretics and a low-sodium diet. In both hypertensive and normotensive cases, digoxin and antiarrhythmics are also indicated. Also, chronic anticoagulation is given where there is concomitant mitral valve prolapse or atrial fibrillation. In general, medical therapy is non-curative and is used for mild-to-moderate regurgitation or in patients unable to tolerate surgery.
Surgery is curative of mitral valve regurgitation. There are two surgical options for the treatment of MI: mitral valve replacement and mitral valve repair. Mitral valve repair is preferred to mitral valve replacement where a repair is feasible as bioprosthetic replacement valves have a limited lifespan of 10 to 15 years, whereas synthetic replacement valves require ongoing use of blood thinners to reduce the risk of stroke. There are two general categories of approaches to mitral valve repair: Resection of the prolapsed valvular segment (sometimes referred to as the 'Carpentier' approach), and installation of artificial chordae to "anchor" the prolapsed segment to the papillary muscle (sometimes referred to as the 'David' approach). With the resection approach, any prolapsing tissue is resected, in effect removing the hole through which the blood is leaking. In the artificial chordae approach, ePTFE (expanded polytetrafluoroethylene, or Gore-Tex) sutures are used to replace the broken or stretched chordae tendonae, bringing the natural tissue back into the physiological position, thus restoring the natural anatomy of the valve. With both techniques, an annuloplasty ring is typically secured to the annulus, or opening of the mitral valve, to provide additional structural support. In some cases, the "double orifice" (or 'Alfieri') technique for mitral valve repair, the opening of the mitral valve is sewn closed in the middle, leaving the two ends still able to open. This ensures that the mitral valve closes when the left ventricle pumps blood, yet allows the mitral valve to open at the two ends to fill the left ventricle with blood before it pumps. In general, mitral valve surgery requires "open-heart" surgery in which the heart is arrested and the patient is placed on a heart-lung machine (cardiopulmonary bypass). This allows the complex surgery to proceed in a still environment.
Due to the physiological stress associated with open-heart surgery, elderly and very sick patients may be subject to increased risk, and may not be candidates for this type of surgery. As a consequence, there are attempts to identify means of correcting MI on a beating heart. The Alfieri technique for instance, has been replicated using a percutaneous catheter technique, which installs a "MitraClip" device to hold the middle of the mitral valve closed.
Junctional ectopic tachycardia (JET) is a rare syndrome of the heart that manifests in patients recovering from heart surgery. It is characterized by cardiac arrhythmia, or irregular beating of the heart, caused by abnormal conduction from or through the atrioventricular node (AV node). In newborns and infants up to 6 weeks old, the disease may also be referred to as His bundle tachycardia.
Indications for surgery for chronic MI include signs of left ventricular dysfunction with ejection fraction less than 60%, severe pulmonary hypertension with pulmonary artery systolic pressure greater than 50 mmHg at rest or 60 mmHg during activity, and new onset atrial fibrillation.
Surgical closure of an ASD involves opening up at least one atrium and closing the defect with a patch under direct visualization.
Percutaneous device closure involves the passage of a catheter into the heart through the femoral vein guided by fluoroscopy and echocardiography. An example of a percutaneous device is a device which has discs that can expand to a variety of diameters at the end of the catheter. The catheter is placed in the right femoral vein and guided into the right atrium. The catheter is guided through the atrial septal wall and one disc (left atrial) is opened and pulled into place. Once this occurs, the other disc (right atrial) is opened in place and the device is inserted into the septal wall. This type of PFO closure is more effective than drug or other medical therapies for decreasing the risk of future thromboembolism.
Percutaneous closure of an ASD is currently only indicated for the closure of secundum ASDs with a sufficient rim of tissue around the septal defect so that the closure device does not impinge upon the superior vena cava, inferior vena cava, or the tricuspid or mitral valves. The Amplatzer Septal Occluder (ASO) is commonly used to close ASDs. The ASO consists of two self-expandable round discs connected to each other with a 4-mm waist, made up of 0.004– to 0.005-inch Nitinol wire mesh filled with Dacron fabric. Implantation of the device is relatively easy. The prevalence of residual defect is low. The disadvantages are a thick profile of the device and concern related to a large amount of nitinol (a nickel-titanium compound) in the device and consequent potential for nickel toxicity.
Percutaneous closure is the method of choice in most centres.
High-dose antibiotics are administered by the intravenous route to maximize diffusion of antibiotic molecules into vegetation(s) from the blood filling the chambers of the heart. This is necessary because neither the heart valves nor the vegetations adherent to them are supplied by blood vessels. Antibiotics are typically continued for two to six weeks depending on the characteristics of the infection and the causative microorganisms.
In acute endocarditis, due to the fulminant inflammation empirical antibiotic therapy is started immediately after the blood has been drawn for culture. This usually includes vancomycin and ceftriaxone IV infusions until the microbial identification and susceptibility report with the minimum inhibitory concentration becomes available allowing for modification of the antimicrobial therapy to target the specific microorganism. It should be noted that the routine use of gentamicin to treat endocarditis has fallen out of favor due to the lack of evidence to support its use (except in infections caused by "Enterococcus" and nutritionally variant "streptococci") and the high rate of complications.
In subacute endocarditis, where patient's hemodynamic status is usually stable, antibiotic treatment can be delayed till the causative microorganism can be identified.
The most common organism responsible for infective endocarditis is "Staphylococcus aureus", which is resistant to penicillin in most cases. High rates of resistance to oxacillin are also seen, in which cases treatment with vancomycin is required.
Viridans group "streptococci" and "Streptococcus bovis" are usually highly susceptible to penicillin and can be treated with penicillin or ceftriaxone.
Relatively resistant strains of viridans group "streptococci" and "Streptococcus bovis" are treated with penicillin or ceftriaxone along with a shorter 2 week course of an aminoglycoside during the initial phase of treatment.
Highly penicillin resistant strains of viridans group "streptococci", nutritionally variant "streptococci" like "Granulicatella sp.", "Gemella sp." and "Abiotrophia defectiva", and "Enterococci" are usually treated with a combination therapy consisting of penicillin and an aminoglycoside for the entire duration of 4–6 weeks.
Selected patients may be treated with a relatively shorter course of treatment (2 weeks) with benzyl penicillin IV if infection is caused by viridans group "streptococci" or "Streptococcus bovis" as long as the following conditions are met:
- Endocarditis of a native valve, not of a prosthetic valve
- An MIC ≤ 0.12 mg/l
- Complication such as heart failure, arrhythmia, and pulmonary embolism occur
- No evidence of extracardiac complication like septic thromboembolism
- No vegetations > 5mm in diameter conduction defects
- Rapid clinical response and clearance of blood stream infection
Additionally oxacillin susceptible "Staphylococcus aureus" native valve endocarditis of the right side can also be treated with a short 2 week course of a beta-lactam antibiotic like nafcillin with or without aminoglycosides.
Surgical debridement of infected material and replacement of the valve with a mechanical or bioprosthetic artificial heart valve is necessary in certain situations:
- Patients with significant valve stenosis or regurgitation causing heart failure
- Evidence of hemodynamic compromise in the form of elevated end-diastolic left ventricular or left atrial pressure or moderate to severe pulmonary hypertension
- Presence of intracardiac complications like paravalvular abscess, conduction defects or destructive penetrating lesions
- Recurrent septic emboli despite appropriate antibiotic treatment
- Large vegetations (> 10 mm)
- Persistently positive blood cultures despite appropriate antibiotic treatment
- Prosthetic valve dehiscence
- Relapsing infection in the presence of a prosthetic valve
- Abscess formation
- Early closure of mitral valve
- Infection caused by fungi or resistant Gram negative bacteria.
The guidelines were recently updated by both the American College of Cardiology and the European Society of Cardiology. There was a recent meta-analysis published that showed surgical intervention at 7 days or less is associated with lower mortality .
Infective endocarditis is associated with 18% in-hospital mortality.
Not all people with heart disease require antibiotics to prevent infective endocarditis. Heart diseases have been classified into high, medium and low risk of developing IE. Those falling into high risk category require IE prophylaxis before endoscopies and urinary tract procedures.
Diseases listed under high risk include:
1. Prior endocarditis
2. Unrepaired cyanotic congenital heart diseases
3. Completely repaired congenital heart disease in their first 6 months
4. Prosthetic heart valves
5. Incompletely repaired congenital heart diseases
6. Cardiac transplant valvulopathy
Following are the antibiotic regimens recommended by the American Heart Association for antibiotic prophylaxis:
In the UK, NICE clinical guidelines no longer advise prophylaxis because there is no clinical evidence that it reduces the incidence of IE and there are negative effects (e.g. allergy and increased bacterial resistance) of taking antibiotics that may outweigh the benefits.
Antibiotics were historically commonly recommended to prevent IE in those with heart problems undergoing dental procedures (known as dental antibiotic prophylaxis). They are less commonly recommended for this procedure.
The most commonly used class of hypnotics for insomnia are the benzodiazepines. Benzodiazepines are not significantly better for insomnia than antidepressants. Chronic users of hypnotic medications for insomnia do not have better sleep than chronic insomniacs not taking medications. In fact, chronic users of hypnotic medications have more regular nighttime awakenings than insomniacs not taking hypnotic medications. Many have concluded that these drugs cause an unjustifiable risk to the individual and to public health and lack evidence of long-term effectiveness. It is preferred that hypnotics be prescribed for only a few days at the lowest effective dose and avoided altogether wherever possible, especially in the elderly. Between 1993 and 2010, the prescribing of benzodiazepines to individuals with sleep disorders has decreased from 24% to 11% in the US, coinciding with the first release of nonbenzodiazepines.
The benzodiazepine and nonbenzodiazepine hypnotic medications also have a number of side-effects such as day time fatigue, motor vehicle crashes and other accidents, cognitive impairments and falls and fractures. Elderly people are more sensitive to these side-effects. Some benzodiazepines have demonstrated effectiveness in sleep maintenance in the short term but in the longer term benzodiazepines can lead to tolerance, physical dependence, benzodiazepine withdrawal syndrome upon discontinuation, and long-term worsening of sleep, especially after consistent usage over long periods of time. Benzodiazepines, while inducing unconsciousness, actually worsen sleep as—like alcohol—they promote light sleep while decreasing time spent in deep sleep. A further problem is, with regular use of short-acting sleep aids for insomnia, daytime rebound anxiety can emerge. Although there is little evidence for benefit of benzodiazepines in insomnia compared to other treatments and evidence of major harm, prescriptions have continued to increase. This is likely due to their addictive nature, both due to misuse and because—through their rapid action, tolerance and withdrawal—they can "trick" insomniacs into thinking they are helping with sleep. There is a general awareness that long-term use of benzodiazepines for insomnia in most people is inappropriate and that a gradual withdrawal is usually beneficial due to the adverse effects associated with the long-term use of benzodiazepines and is recommended whenever possible.
Benzodiazepines all bind unselectively to the GABA receptor. Some theorize that certain benzodiazepines (hypnotic benzodiazepines) have significantly higher activity at the α subunit of the GABA receptor compared to other benzodiazepines (for example, triazolam and temazepam have significantly higher activity at the α subunit compared to alprazolam and diazepam, making them superior sedative-hypnotics – alprazolam and diazepam, in turn, have higher activity at the α subunit compared to triazolam and temazepam, making them superior anxiolytic agents). Modulation of the α subunit is associated with sedation, motor impairment, respiratory depression, amnesia, ataxia, and reinforcing behavior (drug-seeking behavior). Modulation of the α subunit is associated with anxiolytic activity and disinhibition. For this reason, certain benzodiazepines may be better suited to treat insomnia than others.
In the 1980s and 1990s, several trials of melatonin administration to totally blind individuals without light perception produced improvement in sleep patterns, but it was unclear at that time if the benefits were due to entrainment from light cues. Then, using endogenous melatonin as a marker for circadian rhythms, several research groups showed that appropriately timed melatonin administration could entrain free-running rhythms in the totally blind. For example, Sack et al. found that 6 out of 7 patients treated with 10 mg melatonin at bedtime were normally entrained. When the dose was gradually reduced to 0.5 mg in three of the subjects, entrainment persisted. Subsequently, it was shown that treatment initiated with the 0.5 mg dose produced entrainment. One subject who failed to entrain at a higher dose was successfully entrained at a lower dose. A low dose produces melatonin blood levels that are similar to the concentrations naturally produced by nightly pineal secretion.
Products containing melatonin are available as dietary supplements in the United States and Canada, available over the counter. These "supplements" do not require FDA approval. As prescription drugs may be prescribed off-label, treatment recommendations for non-24 in the blind may vary.
There has been a constant growth in the field of melatonin and melatonin receptor agonists since the 1980s. In 2005 Ramelteon (Rozerem) was the first melatonin agonist to be approved in the United States (US), indicated for insomnia treatment in adults. Melatonin in the form of prolonged release (trade name Circadin) was approved in 2007 in Europe (EU) for use as a short-term treatment, in patients 55 years and older, for primary insomnia. Tasimelteon (trade name Hetlioz) received FDA-approval in January 2014 for persons diagnosed with non-24. TIK-301 (Tikvah Therapeutics, Atlanta, USA) has been in phase II clinical trial in the United States since 2002 and the FDA granted it orphan drug designation in May 2004, for use as a treatment for circadian rhythm sleep disorder in blind individuals without light perception as well as individuals with tardive dyskinesia.
Enforcing a 24-hour sleep–wake schedule using alarm clocks or family interventions is often tried but usually unsuccessful. Bright light exposure on awakening to counteract the tendency for circadian rhythms to delay, similar to the treatment for delayed sleep phase disorder, and seasonal affective disorder (SAD) has been found to be effective in some cases, as has melatonin administration in the subjective late afternoon or evening. Light therapy involves at least 20 minutes of exposure to 3000 to 10000 lux light intensity. Going outside on a bright sunny day can accomplish the same benefit as special light fixtures (light boxes). Bright light therapy combined with the use of melatonin as a chronobiotic and avoidance of light before bedtime may be the most effective treatment. Melatonin administration shifts circadian rhythms according to a phase response curve (PRC) that is essentially the inverse of the light PRC. When taken in the late afternoon or evening, it resets the clock earlier; when taken in the morning, it shifts the clock later. Therefore, successful entrainment depends on the appropriate timing of melatonin administration. The accuracy needed for successfully timing the administration of melatonin requires a period of trial and error, as does the dosage. In addition to natural fluctuations within the circadian rhythm, seasonal changes including temperature, hours of daylight, light intensity and diet are likely to affect the efficacy of melatonin and light therapies since these exogenous zeitgebers would compete for hormonal homoeostasis. Further to this there are unforeseen disruptions to contend with even when a stabilised cycle is achieved; such as travel, exercise, stress, alcohol or even the use of light emitting technology close to a subjective evening/night.
Hypnotics and/or stimulants (to promote sleep and wakefulness, respectively) have sometimes been used. Typically a sleep diary is requested to aid in evaluation of treatment, though the emergence of modern actigraphy devices can also assist in the logging of sleep data. Additionally, graphs can now be generated using mobile phone applications, utilising internal accelerometers which are present in most smartphones in use today. The graphs and basic sleep diary records can be shared with a physician. However, due to the lack of clinical accuracy they should not be used for diagnosis, but instead to monitor the cycle and general progress of any medications in use.
Because insomnia is a common symptom of depression, antidepressants are effective for treating sleep problems whether or not they are associated with depression. While all antidepressants help regulate sleep, some antidepressants such as amitriptyline, doxepin, mirtazapine, and trazodone can have an immediate sedative effect, and are prescribed to treat insomnia. Amitriptyline and doxepin both have antihistaminergic, anticholinergic, and antiadrenergic properties, which contribute to both their therapeutic effects and side effect profiles, while mirtazapine's side effects are primarily antihistaminergic, and trazodone's side-effects are primarily antiadrenergic. Mirtazapine is known to decrease sleep latency (i.e., the time it takes to fall asleep), promoting sleep efficiency and increasing the total amount of sleeping time in people with both depression and insomnia.
Agomelatine, a melatonergic antidepressant with sleep-improving qualities that does not cause daytime drowsiness, is licensed for marketing in the European Union and TGA Australia. After trials in the United States its development for use there was discontinued in October 2011 by Novartis, who had bought the rights to market it there from the European pharmaceutical company Servier.
Melatonin taken an hour or so before the usual bedtime may induce sleepiness. Taken this late, it does not, of itself, affect circadian rhythms, but a decrease in exposure to light in the evening is helpful in establishing an earlier pattern. In accordance with its phase response curve (PRC), a very small dose of melatonin can also, or instead, be taken some hours earlier as an aid to resetting the body clock; it must then be small enough not to induce excessive sleepiness.
Side effects of melatonin may include sleep disturbance, nightmares, daytime sleepiness, and depression, though the current tendency to use lower doses has decreased such complaints. Large doses of melatonin can even be counterproductive: Lewy et al. provide support to "the idea that too much melatonin may spill over onto the wrong zone of the melatonin phase-response curve." The long-term effects of melatonin administration have not been examined. In some countries, the hormone is available only by prescription or not at all. In the United States and Canada, melatonin is on the shelf of most pharmacies and herbal stores. The prescription drug Rozerem (ramelteon) is a melatonin analogue that selectively binds to the melatonin MT and MT receptors and, hence, has the possibility of being effective in the treatment of DSPD.
A review by the US Department of Health and Human Services found little difference between melatonin and placebo for most primary and secondary sleep disorders. The one exception, where melatonin is effective, is the "circadian abnormality" DSPD. Another systematic review found inconsistent evidence for the efficacy of melatonin in treating DSPD in adults, and noted that it was difficult to draw conclusions about its efficacy because many recent studies on the subject were uncontrolled.
Modafinil (Provigil) is a stimulant approved in the US for treatment of shift-work sleep disorder, which shares some characteristics with DSPD. A number of clinicians prescribe it for DSPD patients, as it may improve a sleep-deprived patient's ability to function adequately during socially desirable hours. It is generally not recommended to take modafinil after noon; modafinil is a relatively long-acting drug with a half-life of 15 hours, and taking it during the later part of the day can make it harder to fall asleep at bedtime.
Vitamin B was, in the 1990s, suggested as a remedy for DSPD, and is still recommended by some sources. Several case reports were published. However, a review for the American Academy of Sleep Medicine in 2007 concluded that no benefit was seen from this treatment.
One treatment strategy is light therapy (phototherapy), with either a full-spectrum lamp providing 10,000 lux at a specified distance from the eyes or a wearable LED device providing 350–550 lux at a shorter distance. Sunlight can also be used. The light is typically timed for 30–90 minutes at the patient's usual time of spontaneous awakening, or shortly before (but not long before), which is in accordance with the phase response curve (PRC) for light. Only experimentation, preferably with specialist help, will show how great an advance is possible and comfortable. For maintenance, some patients must continue the treatment indefinitely; some may reduce the daily treatment to 15 minutes; others may use the lamp, for example, just a few days a week or just every third week. Whether the treatment is successful is highly individual. Light therapy generally requires adding some extra time to the patient's morning routine. Patients with a family history of macular degeneration are advised to consult with an eye doctor. The use of exogenous melatonin administration (see below) in conjunction with light therapy is common.
Light restriction in the evening, sometimes called darkness therapy or scototherapy, is another treatment strategy. Just as bright light upon awakening should advance one's sleep phase, bright light in the evening and night delays it (see the PRC). It is suspected that DSPD patients may be overly sensitive to evening light. Thus, one might be advised to keep lights and computer screens dim for the last hours before bedtime and even wear amber-colored (blue-blocking) goggles. The photopigment of the retinal photosensitive ganglion cells, melanopsin, is excited by light mainly in the blue portion of the visible spectrum (absorption peaks at ~480 nanometers).
A formerly popular treatment, phase delay chronotherapy, is intended to reset the circadian clock by manipulating bedtimes. It consists of going to bed two or more hours later each day for several days until the desired bedtime is reached, and it often must be repeated every few weeks or months to maintain results. Its safety is uncertain, notably because it has led to the development of non-24-hour sleep-wake rhythm disorder, a much more severe disorder.
A modified chronotherapy is called controlled sleep deprivation with phase advance, SDPA. One stays awake one whole night and day, then goes to bed 90 minutes "earlier" than usual and maintains the new bedtime for a week. This process is repeated weekly until the desired bedtime is reached.
Earlier exercise and meal times can also help promote earlier sleep times.
Timed light exposure can be effective to help people match their circadian rhythms with the expected cycle at their destination; it requires strict adherence to timing. Light therapy is a popular method used by professional athletes to reduce jet lag. Special glasses, usually battery-driven, provide light to the eyes, thus inhibiting the production of melatonin in the brain. Timed correctly, the light may contribute to an advance or delay of the circadian phase to that which will be needed at the destination. The glasses may be used on the plane or even before users leave their departure city.
Timed melatonin administration may be effective in reducing jet lag symptoms. The benefit of using melatonin is likely to be greater for eastward flights than for westward ones because for most people it is easier to delay than to advance the circadian rhythm. There remain issues regarding the appropriate timing of melatonin use in addition to the legality of the substance in certain countries. How effective it may actually be is also questionable. For athletes, anti-doping agencies may prohibit or limit its use.
Timing of exercise and food consumption have also been suggested as remedies, though their applicability in humans and practicality for most travellers are not certain, and no firm guidelines exist. There are very little data supporting the use of diet to adjust to jet lag. While there are data supporting the use of exercise, the intensity of exercise that may be required is significant, and possibly difficult to maintain for non-athletes. These strategies may be used both before departure and after landing. Individuals may differ in their susceptibility to jet lag and in how quickly they can adjust to new sleep-wake schedules.
Short-acting sleep medications can be used to improve sleep quality and timing, and stimulating substances such as caffeine can be used to promote wakefulness, though research results on their success at adapting to jet lag are inconsistent.
For time changes of fewer than three hours, jet lag is unlikely to be a concern, and if travel is for short periods (three days or fewer) retaining a "home schedule" may be better for most people. Sleeping on the plane is only advised if it is within the destination's normal sleep time.
Treatment of EDS relies on identifying and treating the underlying disorder which may cure the person from the EDS. Drugs like modafinil, Armodafinil, Xyrem (sodium oxybate) oral solution, have been approved as treatment for EDS symptoms in the U.S. There is declining usage of other drugs such as methylphenidate (Ritalin), dextroamphetamine (Dexedrine), amphetamine (Adderall), lisdexamfetamine (Vyvanse), methamphetamine (Desoxyn), and pemoline (Cylert), as these psychostimulants may have several adverse effects and may lead to dependency when illicitly misused.
Often, no treatment is needed, as few stones produce symptoms.
Some people are able to remove tonsil stones using the tip of the tongue. Oral irrigators are also simple yet effective and will thoroughly clean the tonsil crypts. Most electric oral irrigators are unsuitable for tonsil stone removal because they are too powerful and are likely to cause discomfort and rupture the tonsils, which could result in further complications such as infection. Irrigators that connect directly to the sink tap via a threaded attachment or otherwise are suitable for tonsil stone removal and everyday washing of the tonsils because they can jet water at low pressure levels that the user can adjust by simply turning the sink tap, allowing for a continuous range of pressures to suit each user's specific requirements.
More simply still, gargling with warm, salty water may help alleviate the discomfort of tonsillitis, which often accompanies tonsil stones. Vigorous gargling each morning can also keep the tonsil crypts clear of all but the most persistent tonsilloliths.
Tonsillectomy may be indicated if bad breath due to tonsillar stones persists despite other measures.
Research suggests that hypnosis may be helpful in alleviating some types and manifestations of sleep disorders in some patients. "Acute and chronic insomnia often respond to relaxation and hypnotherapy approaches, along with sleep hygiene instructions." Hypnotherapy has also helped with nightmares and sleep terrors. There are several reports of successful use of hypnotherapy for parasomnias specifically for head and body rocking, bedwetting and sleepwalking.
Hypnotherapy has been studied in the treatment of sleep disorders in both adults and children.
Travelling west causes fewer problems than travelling east, and it is usually sufficient to seek exposure to light during the day and avoid it at night.
A review of the evidence in 2012 concluded that current research is not rigorous enough to make recommendations around the use of acupuncture for insomnia. The pooled results of two trials on acupuncture showed a moderate likelihood that there may be some improvement to sleep quality for individuals with a diagnosis insomnia. This form of treatment for sleep disorders is generally studied in adults, rather than children. Further research would be needed to study the effects of acupuncture on sleep disorders in children.