Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment of bronchiectasis includes controlling infections and bronchial secretions, relieving airway obstructions, removal of affected portions of lung by surgical removal or artery embolization and preventing complications. The prolonged use of antibiotics prevents detrimental infections and decreases hospitalizations in people with bronchiectasis, but also increases the risk of people becoming infected with drug-resistant bacteria.
Other treatment options include eliminating accumulated fluid with postural drainage and chest physiotherapy. Postural drainage techniques, aided by physiotherapists and respiratory therapists, are an important mainstay of treatment. Airway clearance techniques appear useful.
Surgery may also be used to treat localized bronchiectasis, removing obstructions that could cause progression of the disease.
Inhaled steroid therapy that is consistently adhered to can reduce sputum production and decrease airway constriction over a period of time, and help prevent progression of bronchiectasis. This is not recommended for routine use in children. One commonly used therapy is beclometasone dipropionate.
Although not approved for use in any country, mannitol dry inhalation powder, has been granted orphan drug status by the FDA for use in people with bronchiectasis and with cystic fibrosis.
Treatment depends on the underlying cause. Treatments include iced saline, and topical vasoconstrictors such as adrenalin or vasopressin. Selective bronchial intubation can be used to collapse the lung that is bleeding. Also, endobronchial tamponade can be used. Laser photocoagulation can be used to stop bleeding during bronchoscopy. Angiography of bronchial arteries can be performed to locate the bleeding, and it can often be embolized. Surgical option is usually the last resort, and can involve, removal of a lung lobe or removal of the entire lung. Non–small-cell lung cancer can also be treated with erlotinib or gefitinib. Cough suppressants can increase the risk of choking.
Therapeutic interventions with medium-chain triglyceride-enriched low-fat diets, intratracheal heparin, inhaled tissue plasminogen activator, and steroids have also been reported and have met with variable success.
Inhaled mucolytics: Potassium iodide and acetylcysteine inhaled therapy are often used to help the patient cough up the casts by breaking down the thick mucus formations.
Inhaled and oral steroids: If PB is associated with asthma or an infection, inhaled and oral steroids have been shown to be effective.
Treatment is with corticosteroids and possibly intravenous immunoglobulins.
In order to prevent bronchiectasis, children should be immunized against measles, pertussis, pneumonia, and other acute respiratory infections of childhood. While smoking has not been found to be a direct cause of bronchiectasis, it is certainly an irritant that all patients should avoid in order to prevent the development of infections (such as bronchitis) and further complications.
Treatments to slow down the progression of this chronic disease include keeping bronchial airways clear and secretions weakened through various forms of pneumotherapy. Aggressively treating bronchial infections with antibiotics to prevent the destructive cycle of infection, damage to bronchial tubes, and more infection is also standard treatment. Regular vaccination against pneumonia, influenza and pertussis are generally advised. A healthy body mass index and regular doctor visits may have beneficial effects on the prevention of progressing bronchiectasis. The presence of hypoxemia, hypercapnia, dyspnea level and radiographic extent can greatly affect the mortality rate from this disease.
Treatment of VAP should be matched to known causative bacteria. However, when VAP is first suspected, the bacteria causing infection is typically not known and broad-spectrum antibiotics are given (empiric therapy) until the particular bacterium and its sensitivities are determined. Empiric antibiotics should take into account both the risk factors a particular individual has for resistant bacteria as well as the local prevalence of resistant microorganisms. If a person has previously had episodes of pneumonia, information may be available about prior causative bacteria. The choice of initial therapy is therefore entirely dependent on knowledge of local flora and will vary from hospital to hospital. Treatment of VAP with a single antibiotic has been reported to result in similar outcomes as with a combination of more than one antibiotics, in terms of cure rates, duration of ICU stay, mortality and adverse effects.
Risk factors for infection with an MDR strain include ventilation for more than five days, recent hospitalization (last 90 days), residence in a nursing home, treatment in a hemodialysis clinic, and prior antibiotic use (last 90 days).
Possible empirical therapy combinations include (but are not limited to):
- vancomycin/linezolid and ciprofloxacin,
- cefepime and gentamicin/amikacin/tobramycin
- vancomycin/linezolid and ceftazidime
- Ureidopenicillin plus β-lactamase inhibitor such as piperacillin/tazobactam or ticarcillin/clavulanate
- a carbapenem (e.g., imipenem or meropenem)
Therapy is typically changed once the causative bacteria are known and continued until symptoms resolve (often 7 to 14 days). For patients with VAP not caused by nonfermenting Gram-negative bacilli (like Acinetobacter, Pseudomonas aeruginosa) the available evidence seems to support the use of short-course antimicrobial treatments (< or =10 days).
People who do not have risk factors for MDR organisms may be treated differently depending on local knowledge of prevalent bacteria. Appropriate antibiotics may include ceftriaxone, ciprofloxacin, levofloxacin, or ampicillin/sulbactam.
As of 2005, there is ongoing research into inhaled antibiotics as an adjunct to conventional therapy. Tobramycin and polymyxin B are commonly used in certain centres but there is no clinical evidence to support their use.
Acute therapy for PB is often focused on removal or facilitated expectoration of the casts. This is followed by short and long term efforts to identify and remediate the underlying condition resulting in the excessive airway leakage or inflammation that is causing the casts to form.
PB can present as a life threatening emergency when the casts obstruct the major airways resulting in acute respiratory distress. Intervention by a skilled physician experienced with foreign body removal from the lungs is essential. Evaluation by means of bronchoscopy can be difficult and time consuming and is best performed under general anesthesia.
Casts can be removed mechanically by bronchoscopy or physical therapy. High-frequency chest wall oscillation can also be used to vibrate the chest wall at a high frequency to try to loosen and thin the casts. Inhaled therapy using bronchodilators, corticosteroids or mucolytics can be used to try to disrupt the cast formation.
Recently, heavy T2-weighted MRI has revealed that occult lymphatic anomalies that represent developmental remnants or subclinical GLA are present in adults who present with expectoration of large multiantennary, branching casts. Intranodal lymphangiogram and dynamic contrast-enhanced MR lymphangiography have been used to more precisely image the leaks, and in the small number of patients who have been treated to date, embolization of the TD has been highly successful in controlling cast formation.
Cannulation of the thoracic duct followed by embolization should be considered in those patients who are shown to have leakage of lymphatic fluid into the airway.
ILD is not a single disease, but encompasses many different pathological processes. Hence treatment is different for each disease.
If a specific occupational exposure cause is found, the person should avoid that environment. If a drug cause is suspected, that drug should be discontinued.
Many cases due to unknown or connective tissue-based causes are treated with corticosteroids, such as prednisolone. Some people respond to immunosuppressant treatment. Patients with a low level of oxygen in the blood may be given supplemental oxygen.
Pulmonary rehabilitation appears to be useful. Lung transplantation is an option if the ILD progresses despite therapy in appropriately selected patients with no other contraindications.
On October 16, 2014, the Food and Drug Administration approved a new drug for the treatment of Idiopathic Pulmonary Fibrosis (IPF). This drug, Ofev (nintedanib), is marketed by Boehringer Ingelheim Pharmaceuticals, Inc. This drug has been shown to slow the decline of lung function although the drug has not been shown to reduce mortality or improve lung function. The estimated cost of the drug per year is approximately $94,000.
Subcutaneous emphysema is usually benign. Most of the time, SCE itself does not need treatment (though the conditions from which it results may); however, if the amount of air is large, it can interfere with breathing and be uncomfortable. It occasionally progresses to a state "Massive Subcutaneous Emphysema" which is quite uncomfortable and requires surgical drainage. When the amount of air pushed out of the airways or lung becomes massive, usually due to positive pressure ventilation, the eyelids swell so much that the patient cannot see. Also the pressure of the air may impede the blood flow to the areolae of the breast and skin of the scrotum or labia. This can lead to necrosis of the skin in these areas. The latter are urgent situations requiring rapid, adequate decompression. Severe cases can compress the trachea and do require treatment.
In severe cases of subcutaneous emphysema, catheters can be placed in the subcutaneous tissue to release the air. Small cuts, or "blow holes", may be made in the skin to release the gas. When subcutaneous emphysema occurs due to pneumothorax, a chest tube is frequently used to control the latter; this eliminates the source of the air entering the subcutaneous space. If the volume of subcutaneous air is increasing, it may be that the chest tube is not removing air rapidly enough, so it may be replaced with a larger one. Suction may also be applied to the tube to remove air faster. The progression of the condition can be monitored by marking the boundaries with a special pencil for marking on skin.
Since treatment usually involves dealing with the underlying condition, cases of spontaneous subcutaneous emphysema may require nothing more than bed rest, medication to control pain, and perhaps supplemental oxygen. Breathing oxygen may help the body to absorb the subcutaneous air more quickly.
Prevention of VAP involves limiting exposure to resistant bacteria, discontinuing mechanical ventilation as soon as possible, and a variety of strategies to limit infection while intubated. Resistant bacteria are spread in much the same ways as any communicable disease. Proper hand washing, sterile technique for invasive procedures, and isolation of individuals with known resistant organisms are all mandatory for effective infection control. A variety of aggressive weaning protocols to limit the amount of time a person spends intubated have been proposed. One important aspect is limiting the amount of sedation that a ventilated person receives.
Other recommendations for preventing VAP include raising the head of the bed to at least 30 degrees. Antiseptic mouthwashes such as chlorhexidine may also reduce the risk of VAP, although the evidence is mainly restricted to those who have undergone cardiac surgery.
American and Canadian guidelines strongly recommend the use of supraglottic secretion drainage (SSD) Special tracheal tubes with an incorporated suction lumen as the EVAC tracheal tube form Covidien / Mallinckrodt can be used for that reason. New cuff technology based on polyurethane material in combination with subglottic drainage (SealGuard Evac tracheal tube from Covidien/Mallinckrodt)showed significant delay in early and late onset of VAP.
A recent clinical trial indicates that the use of silver-coated endotracheal tubes may also reduce the incidence of VAP. There is tentative evidence that the use of probiotics may reduced the likelihood of getting VAP, however it is unclear if probiotics affect ICU or in-hospital death.
Broadspectrum antibiotic to cover mixed flora is the mainstay of treatment. Pulmonary physiotherapy and postural drainage are also important. Surgical procedures are required in selective patients for drainage or pulmonary resection.
Oral antibiotics, rest, simple analgesics, and fluids usually suffice for complete resolution. However, those with other medical conditions, the elderly, or those with significant trouble breathing may require more advanced care. If the symptoms worsen, the pneumonia does not improve with home treatment, or complications occur, hospitalization may be required. Worldwide, approximately 7–13% of cases in children result in hospitalization, whereas in the developed world between 22 and 42% of adults with community-acquired pneumonia are admitted. The CURB-65 score is useful for determining the need for admission in adults. If the score is 0 or 1, people can typically be managed at home; if it is 2, a short hospital stay or close follow-up is needed; if it is 3–5, hospitalization is recommended. In children those with respiratory distress or oxygen saturations of less than 90% should be hospitalized. The utility of chest physiotherapy in pneumonia has not yet been determined. Non-invasive ventilation may be beneficial in those admitted to the intensive care unit. Over-the-counter cough medicine has not been found to be effective nor has the use of zinc in children. There is insufficient evidence for mucolytics.
Antibiotics improve outcomes in those with bacterial pneumonia. Antibiotic choice depends initially on the characteristics of the person affected, such as age, underlying health, and the location the infection was acquired. In the UK, treatment before culture results with amoxicillin is recommended as the first line for community-acquired pneumonia, with doxycycline or clarithromycin as alternatives. In North America, where the "atypical" forms of community-acquired pneumonia are more common, macrolides (such as azithromycin or erythromycin), and doxycycline have displaced amoxicillin as first-line outpatient treatment in adults. In children with mild or moderate symptoms, amoxicillin remains the first line. The use of fluoroquinolones in uncomplicated cases is discouraged due to concerns about side-effects and generating resistance in light of there being no greater clinical benefit.
For those who require hospitalization and caught their pneumonia in the community the use of a β-lactam such as cephazolin plus macrolide such as azithromycin or a fluoroquinolones is recommended. The addition of corticosteroids also appears to improve outcomes.
The duration of treatment has traditionally been seven to ten days, but increasing evidence suggests that shorter courses (three to five days) are similarly effective. Recommendations for hospital-acquired pneumonia include third- and fourth-generation cephalosporins, carbapenems, fluoroquinolones, aminoglycosides, and vancomycin. These antibiotics are often given intravenously and used in combination. In those treated in hospital, more than 90% improve with the initial antibiotics.
Most cases respond to antibiotics and prognosis is usually excellent unless there is a debilitating underlying condition. Mortality from lung abscess alone is around 5% and is improving.
To date there have been no clinical trials to determine effective treatment for this disease. Some patients have been treated with somatostatin analogs. Although the cough associated with DIPNECH tends to diminish on this treatment, improvement in pulmonary function has not been clearly demonstrated. There are also reports of symptomatic treatment with long- and short-acting beta agonists. Although steroids, both oral and inhaled, have been used in the setting of DIPNECH, there is no clear improvement with this treatment.
It is not uncommon for typical carcinoids to arise within DIPNECH. Due to presence of these tumors, DIPNECH is classified as a pre-malignant condition. Although there have been reports of atypical carcinoids with local lymph node involvement, there are no reports of more aggressive neuroendocrine tumors, such as large cell neuroendocrine or small cell lung cancer, associated with DIPNECH. When isolated bronchial carcinoids are diagnosed, oncology guidelines recommend surgical resection with lymph node sampling. However, as multiple carcinoids may develop in the setting of DIPNECH, a more conservative approach is often considered to preserve lung function.
If the symptoms are severe enough, treatment may be needed. These range from medical management over mechanical ventilation (both continuous positive airway pressure (CPAP), or bi-level positive airway pressure (BiPAP) to tracheal stenting and surgery.
Surgical techniques include aortopexy, tracheopexy, tracheobronchoplasty, and tracheostomy. The role of the nebulised recombinant human deoxyribonuclease (rhDNase) remains inconclusive.
Usually the sequestration is removed after birth via surgery. In most cases this surgery is safe and effective; the child will grow up to have normal lung function.
In a few instances, fetuses with sequestrations develop problematic fluid collections in the chest cavity. In these situations a Harrison catheter shunt can be used to drain the chest fluid into the amniotic fluid.
In rare instances where the fetus has a very large lesion, resuscitation after delivery can be dangerous. In these situations a specialized delivery for management of the airway compression can be planned called the EXIT procedure, or a fetal laser ablation procedure can be performed. During this minimally invasive fetal intervention, a small needle is inserted into the sequestration, and a laser fiber is targeted at the abnormal blood vessel going to the sequestration. The goal of the operation is to use laser energy to stop the blood flow to the sequestration, causing it to stop growing. Ideally, after the surgery, the sequestration steals less blood flow from the fetus, and the heart and lungs start growing more normally as the sequestration shrinks in size and the pleural effusion goes away.
The treatment for this is a wedge resection, segmentectomy, or lobectomy via a VATS procedure or thoracotomy.
Pulmonary sequestrations usually get their blood supply from the thoracic aorta.
Treatment depends on the underlying cause of the pleural effusion.
Therapeutic aspiration may be sufficient; larger effusions may require insertion of an intercostal drain (either pigtail or surgical). When managing these chest tubes, it is important to make sure the chest tubes do not become occluded or clogged. A clogged chest tube in the setting of continued production of fluid will result in residual fluid left behind when the chest tube is removed. This fluid can lead to complications such as hypoxia due to lung collapse from the fluid, or fibrothorax if scarring occurs. Repeated effusions may require chemical (talc, bleomycin, tetracycline/doxycycline), or surgical pleurodesis, in which the two pleural surfaces are scarred to each other so that no fluid can accumulate between them. This is a surgical procedure that involves inserting a chest tube, then either mechanically abrading the pleura or inserting the chemicals to induce a scar. This requires the chest tube to stay in until the fluid drainage stops. This can take days to weeks and can require prolonged hospitalizations. If the chest tube becomes clogged, fluid will be left behind and the pleurodesis will fail.
Pleurodesis fails in as many as 30% of cases. An alternative is to place a PleurX Pleural Catheter or Aspira Drainage Catheter. This is a 15Fr chest tube with a one-way valve. Each day the patient or care givers connect it to a simple vacuum tube and remove from 600 to 1000 mL of fluid, and can be repeated daily. When not in use, the tube is capped. This allows patients to be outside the hospital. For patients with malignant pleural effusions, it allows them to continue chemotherapy, if indicated. Generally, the tube is in for about 30 days and then it is removed when the space undergoes a spontaneous pleurodesis.
To properly treat a patient with tracheobronchomalacia, the subtype must be determined (primary or secondary). After the type is named, the cause must be identified, whether it is from genetics, a trauma accident, or chronic tracheal illness. If a trauma case or chronic tracheal illnesses were the cause, the first steps of treatment would be to fix or help these underlying issues. If the cause is genetic or the previous underlying issues could not be fixed, other treatments would be assessed. More severe treatments include silicone stenting to prevent tracheal constriction, surgery to strengthen or attempt to rebuild the walls, continuous positive airway pressure that has a machine blow small amounts of air into the trachea to keep it open (mainly at night), or a tracheostomy, which is surgically put into your neck that leads to your trachea to help with breathing. People with tracheobronchomalacia who do not experience symptoms do not need treatment and are often undiagnosed.
Evidence does not support the general use of antibiotics in acute bronchitis. While some evidence suggests antibiotics speed up resolution of the cough by about 12 hours there is a greater risk of gastrointestinal problems and no change in longer term outcomes. Antibiotics use also leads to the promotion of antibiotic-resistant bacteria, which increase morbidity and mortality.
Air in subcutaneous tissue does not usually pose a lethal threat; small amounts of air are reabsorbed by the body. Once the pneumothorax or pneumomediastinum that causes the subcutaneous emphysema is resolved, with or without medical intervention, the subcutaneous emphysema will usually clear. However, spontaneous subcutaneous emphysema can, in rare cases, progress to a life-threatening condition, and subcutaneous emphysema due to mechanical ventilation may induce ventilatory failure.
Specific pretreatments, drugs to prevent chemically induced lung injuries due to respiratory airway toxins, are not available. Analgesic medications, oxygen, humidification, and ventilator support currently constitute standard therapy. In fact, mechanical ventilation remains the therapeutic mainstay for acute inhalation injury. The cornerstone of treatment is to keep the PaO2 > 60 mmHg (8.0 kPa), without causing injury to the lungs with excessive O2 or volutrauma. Pressure control ventilation is more versatile than volume control, although breaths should be volume limited, to prevent stretch injury to the alveoli. Positive end-expiratory pressure (PEEP) is used in mechanically ventilated patients with ARDS to improve oxygenation. Hemorrhaging, signifying substantial damage to the lining of the airways and lungs, can occur with exposure to highly corrosive chemicals and may require additional medical interventions. Corticosteroids are sometimes administered, and bronchodilators to treat bronchospasms. Drugs that reduce the inflammatory response, promote healing of tissues, and prevent the onset of pulmonary edema or secondary inflammation may be used following severe injury to prevent chronic scarring and airway narrowing.
Although current treatments can be administered in a controlled hospital setting, many hospitals are ill-suited for a situation involving mass casualties among civilians. Inexpensive positive-pressure devices that can be used easily in a mass casualty situation, and drugs to prevent inflammation and pulmonary edema are needed. Several drugs that have been approved by the FDA for other indications hold promise for treating chemically induced pulmonary edema. These include β2-agonists, dopamine, insulin, allopurinol, and non-steroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen. Ibuprofen is particularly appealing because it has an established safety record and can be easily administered as an initial intervention. Inhaled and systemic forms of β2-agonists used in the treatment of asthma and other commonly used medications, such as insulin, dopamine, and allopurinol have also been effective in reducing pulmonary edema in animal models but require further study. A recent study documented in the "AANA Journal" discussed the use of volatile anesthetic agents, such as sevoflurane, to be used as a bronchodilator that lowered peak airway pressures and improved oxygenation. Other promising drugs in earlier stages of development act at various steps in the complex molecular pathways underlying pulmonary edema. Some of these potential drugs target the inflammatory response or the specific site(s) of injury. Others modulate the activity of ion channels that control fluid transport across lung membranes or target surfactant, a substance that lines the air sacs in the lungs and prevents them from collapsing. Mechanistic information based on toxicology, biochemistry, and physiology may be instrumental in determining new targets for therapy. Mechanistic studies may also aid in the development of new diagnostic approaches. Some chemicals generate metabolic byproducts that could be used for diagnosis, but detection of these byproducts may not be possible until many hours after initial exposure. Additional research must be directed at developing sensitive and specific tests to identify individuals quickly after they have been exposed to varying levels of chemicals toxic to the respiratory tract.
Currently there are no clinically approved agents that can reduce pulmonary and airway cell dropout and avert the transition to pulmonary and /or airway fibrosis.
Most cases are self-limited and resolve themselves in a few weeks.
Silicosis is a permanent disease with no cure. Treatment options currently available focus on alleviating the symptoms and preventing any further progress of the condition. These include:
- Stopping further exposure to airborne silica, silica dust and other lung irritants, including tobacco smoking.
- Cough suppressants.
- Antibiotics for bacterial lung infection.
- TB prophylaxis for those with positive tuberculin skin test or IGRA blood test.
- Prolonged anti-tuberculosis (multi-drug regimen) for those with active TB.
- Chest physiotherapy to help the bronchial drainage of mucus.
- Oxygen administration to treat hypoxemia, if present.
- Bronchodilators to facilitate breathing.
- Lung transplantation to replace the damaged lung tissue is the most effective treatment, but is associated with severe risks of its own.
- For acute silicosis, bronchoalveolar lavage may alleviate symptoms, but does not decrease overall mortality.
Experimental treatments include:
- Inhalation of powdered aluminium, d-penicillamine and polyvinyl pyridine-N-oxide.
- Corticosteroid therapy.
- Chinese Herbal Kombucha
- The herbal extract tetrandrine may slow progression of silicosis.
The standard treatment recommended by the WHO is with isoniazid and rifampicin for six months, as well as ethambutol and pyrazinamide for the first two months. If there is evidence of meningitis, then treatment is extended to twelve months. The U.S. guidelines recommend nine months' treatment. "Common medication side effects a patient may have such as inflammation of the liver if a patient is taking pyrazinamide, rifampin, and isoniazid. A patient may also have drug resistance to medication, relapse, respiratory failure, and adult respiratory distress syndrome."