Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment is supportive and consists of management of manifestations. User of hearing aids and/or cochlear implant, suitable educational programs can be offered. Periodic surveillance is also important.
No specific treatment exists for Pendred syndrome. Speech and language support and hearing aids are important. Cochlear implants may be needed if the hearing loss drops to severe to profound levels and can improve language skills. If thyroid hormone levels are decreased, thyroid hormone supplements may be required. Patients are advised to take precautions against head injury.
About half of people with SSNHL will recover some or all of their hearing spontaneously, usually within one to two weeks from onset. Eighty-five percent of those who receive treatment from an otolaryngologist (sometimes called an ENT) will recover some of their hearing.
- vitamins and antioxidants
- vasodilators
- betahistine (Betaserc), an anti-vertigo drug
- hyperbaric oxygen
- anti-inflammatory agents, primarily oral corticosteroids such as prednisone, methylprednisone
- Intratympanic administration - Gel formulations are under investigation to provide more consistent drug delivery to the inner ear. Local drug delivery can be accomplished through intratympanic administration, a minimally invasive procedure where the ear drum is anesthetized and a drug is administered into the middle ear. From the middle ear, a drug can diffuse across the round window membrane into the inner ear. Intratympanic administration of steroids may be effective for sudden sensorineural hearing loss for some patients, but high quality clinical data has not been generated. Intratympanic administration of an anti-apoptotic peptide (JNK inhibitor) is currently being evaluated in late-stage clinical development.
A child with a congenital hearing loss should begin receiving treatment before 6 months of age. Studies suggest that children treated this early are usually able to develop communication skills (using spoken or sign language) that are as good as those of hearing peers.
In the United States of America, because of a Federal law (the Individuals with Disabilities Education Act), children with a hearing loss between birth and 3 years of age have the right to receive interdisciplinary assessment and early intervention services at little or no cost. After age 3, early intervention and special education programs are provided through the public school system.
There are a number of treatment options available, and parents will need to decide which are most appropriate for their child. They will need to consider the child’s age, developmental level and personality, the severity of the hearing loss, as well as their own preferences. Ideally a team of experts including the child’s primary care provider, an otolaryngologist, a speech-language pathologist, audiologist and an educator will work closely with the parents to create an Individualized Family Service Plan. Treatment plans can be changed as the child gets older.
Children as young as 4 weeks of age can benefit from a hearing aid. These devices amplify sound, making it possible for many children to hear spoken words and develop language. However, some children with severe to profound hearing loss may not be able to hear enough sound, even with a hearing aid, to make speech audible. A behind-the-ear hearing aid is often recommended for young children because it is safer and more easily fitted and adjusted as the child grows as compared to one that fits within the ear.
Parents also will need to decide how their family and child are going to communicate. If the child is going to communicate orally (speech), s/he may need assistance learning listening skills and lip reading skills to help her/him understand what others are saying. Many children with hearing loss also need speech or language therapy.
A child also can learn to communicate using a form of sign language. In the United States of America, the type preferred by most deaf adults is American Sign Language (ASL), which has rules and grammar that is distinct from English. There are also several variations of sign language that can be used along with spoken English which are standard in English-speaking countries outside the United States.
There is also a visual model of spoken language called cued speech. Learning to lip read is very difficult because many sounds look the same on the lips. Cued speech enables young children with hearing loss to clearly see what is being said, and learn spoken languages with normal grammar and vocabulary. It clarifies lip reading using 8 hand shapes in 4 positions and usually takes less than 20 hours to learn the entire system.
Surgery may be recommended if a child has a permanent conductive hearing loss caused by malformations of the outer or middle ear, or by repeated ear infections. Although fluid in the middle ear usually results in only temporary hearing loss, chronic ear infection can cause a child to fall behind in language skills. In some cases, a doctor may suggest inserting a tube through the eardrum to allow the middle ear to drain. This procedure generally does not require an overnight hospital stay.
Surgery also may be an option for some children with severe to profound sensorineural hearing loss. A device called a cochlear implant can be surgically inserted in the inner ear of children as young as 12 months of age to stimulate hearing. The surgery requires a hospital stay of one to several days. With additional language and speech therapy, children with cochlear implants may learn to understand speech and speak reasonably well, but the amount of improvement is variable.
Once a child is diagnosed, the immediate and anticipated reaction of the parents and immediate family is one of the denial. Doctors or the audiologists need to counsel the family, help them cope with the situation and encourage them to look forward to solutions to overcome the problem. Often when the family is told about the excellent options available for a hearing impaired child, the chances of acceptance are much better. Once the family accepts the handicap, half the battle is over and rehabilitation can begin.
The type of intervention required depends on several factors. Chief among these is the degree of impairment. When a child has a fair degree of residual hearing, the correct intervention would be fitting "optimised" hearing aids. "Optimisation" means fitting the child with a hearing aid appropriate to its degree of deafness.
Today a variety of good quality hearing aids are available – analog or digital body worn (for small children) or ear level for older children. When fitting a hearing aid, a competent audiologist has to assess the child's residual hearing, look at the hearing aid's performance and fit the child with an appropriate instrument. Equally important is the ear mould, which has to be custom made to suit the shape of the child's ear.
If a child has profound or total deafness, the benefits of hearing aids are limited. Depending upon the level and type of hearing loss, cochlear implants may be used instead of hearing aids.
Treatment modalities fall into three categories: pharmacological, surgical, and management. As SNHL is a physiologic degradation and considered permanent, there are as of this time, no approved or recommended treatments.
There have been significant advances in identification of human deafness genes and elucidation of their cellular mechanisms as well as their physiological function in mice. Nevertheless, pharmacological treatment options are very limited and clinically unproven. Such pharmaceutical treatments as are employed are palliative rather than curative, and addressed to the underlying cause if one can be identified, in order to avert progressive damage.
Profound or total hearing loss may be amenable to management by cochlear implants, which stimulate cochlear nerve endings directly. A cochlear implant is surgical implantation of a battery powered electronic medical device in the inner ear. Unlike hearing aids, which make sounds louder, cochlear implants do the work of damaged parts of the inner ear (cochlea) to provide sound signals to the brain. These consist of both internal implanted electrodes and magnets and external components. The quality of sound is different than natural hearing but may enable the recipient to better recognize speech and environmental sounds.
Because of risk and expense, such surgery is reserved for cases of severe and disabling hearing impairment
Management of sensorineural hearing loss involves employing strategies to support existing hearing such as lip-reading, enhanced communication etc. and amplification using hearing aids. Hearing aids are specifically tuned to the individual hearing loss to give maximum benefit.
The treatment will vary with the different grades, but the most common is a surgical repair. The surgical option is cosmetic reconstruction of the external ear's normal shape and repair of the ear canal. In less severe cases the reconstruction will be sufficient to restore hearing. In grades of anotia/microtia that affect the middle ear the surgery with the use of a Bone Anchored Hearing Aid (BAHA) will likely restore the hearing. The BAHA may be surgically implanted onto the skull which would allow for some hearing repair by conduction through the skull bone. "This allows sound vibrations to travel through bones in the head to the inner ear."
BAHA: An implantable hearing device. It is the only hearing aid device that works via direct bone conduction.
Treatment depends on the specific cause if known as well as the extent, type and configuration of the hearing loss. Most hearing loss, that resulting from age and noise, is progressive and irreversible, and there are currently no approved or recommended treatments; management is by hearing aid. A few specific kinds of hearing loss are amenable to surgical treatment. In other cases, treatment is addressed to underlying pathologies, but any hearing loss incurred may be permanent.
There are a number of devices that can improve hearing in those who are deaf or hard of hearing or allow people with these conditions to manage better in their lives.
There is no treatment, surgical or otherwise, for hearing loss due to the most common causes (age, noise, and genetic defects). For a few specific conditions, surgical intervention can provide a remedy:
- surgical correction of superior canal dehiscence
- myringotomy, surgical insertion of drainage ventilation tubes in the tympanic membrane. Such placement is usually temporary until the underlying pathology (infection or other inflammation) can be resolved.
- radiotherapy or surgical excision of vestibular schwannoma or acoustic neuroma, though, in most cases, it is unlikely that hearing will be preserved
- Stapedectomy and stapedotomy for otosclerosis - replacement or reshaping of the stapes bone of the middle ear can restore hearing in cases of conductive hearing loss
Surgical and implantable hearing aids are an alternative to conventional external hearing aids.
If the ear is dry and not infected, an air conduction aid could be tried; if the ear is draining, a direct bone condition hearing aid is often the best solution. If the conductive part of the hearing loss is more than 30–35 dB, an air conduction device could have problems overcoming this gap. A bone-anchored hearing aid could, in this situation, be a good option.
The active bone conduction hearing implant Bonebridge is also an option. This implant is invisible under the intact skin and therefore minimises the risk of skin irritations.
Cochlear implants improve outcomes in people with hearing loss in either one or both ears. They work by artificial stimulation of the cochlear nerve by providing an electric impulse substitution for the firing of hair cells. They are expensive, and require programming along with extensive training for effectiveness.
Cochlear implants as well as bone conduction implants can help with single sided deafness.
Middle ear implants or bone conduction implants can help with conductive hearing loss.
People with cochlear implants are at a higher risk for bacterial meningitis. Thus, meningitis vaccination is recommended. People who have hearing loss, especially those who develop a hearing problem in childhood or old age, may need support and technical adaptations as part of the rehabilitation process. Recent research shows variations in efficacy but some studies show that if implanted at a very young age, some profoundly impaired children can acquire effective hearing and speech, particularly if supported by appropriate rehabilitation.
There is no known direct treatment. Current treatment efforts focus on managing the complications of Wolfram syndrome, such as diabetes mellitus and diabetes insipidus.
There is currently no treatment or cure for Waardenburg syndrome. The symptom most likely to be of practical importance is deafness, and this is treated as any other irreversible deafness would be. In marked cases there may be cosmetic issues. Other abnormalities (neurological, structural, Hirschsprung disease) associated with the syndrome are treated symptomatically.
Children with CHARGE syndrome may have a number of life-threatening medical conditions; with advances in medical care, these children can survive and can thrive with the support of a multidisciplinary team of medical professionals. Therapies and education must take into consideration hearing impairment, vision problems, and any others. Early intervention, such as occupational, speech-language, and physical therapy, to improve static posture, ambulation, and self-care skills is important. The intelligence of children with multiple health impairments, such as combined deafblindness, can be underestimated in the absence of early intervention.
This can be done by annual evaluations by multidiciplinary team involving otolaryngologist, clinical geneticist, a pediatrician, the expertise of an educator of the deaf, a neurologist is appropriate.
Since Usher syndrome results from the loss of a gene, gene therapy that adds the proper protein back ("gene replacement") may alleviate it, provided the added protein becomes functional. Recent studies of mouse models have shown one form of the disease—that associated with a mutation in myosin VIIa—can be alleviated by replacing the mutant gene using a lentivirus. However, some of the mutated genes associated with Usher syndrome encode very large proteins—most notably, the "USH2A" and "GPR98" proteins, which have roughly 6000 amino-acid residues. Gene replacement therapy for such large proteins may be difficult.
Treatment is usually confined to such surgical intervention as may be necessary to help the child to develop e.g. jaw distraction/bone grafts, ocular dermoid debulking (see below), repairing cleft palate/lip, repairing heart malformations or spinal surgery. Some patients with Goldenhar syndrome will require assistance as they grow by means of hearing aids or glasses.
Stem cell grafting (womb tissue grafting) has been successfully used to "reprogram" eye dermoids, effectively halting the regrowth of eye dermoids.
These tissues that grow on the eye are "mis-programmed" cells (sometimes tooth or nail cells instead of eye cells).
Unfortunately, there is not one specific treatment option that can rid a person of this syndrome. However, there are many routes one can take to make living with this disease a lot easier. For example, there are many treatment programs that doctors can specialize for patients and their needs. Meeting with a doctor is very crucial and these specializations can be very useful. Also, one can seek help from pediatricians, EENT doctors, audiologists, and orthopedists. Brace fittings, hearing aids, and physical therapy can also be pushed by one's doctor, so that a patient can live normally. Additionally, anticonvulsant drugs can be used to stop seizures.
There is no known cure to BVVL however a Dutch group have reported the first promising attempt at treatment of the disorder with high doses of riboflavin. This Riboflavin protocol seems to be beneficial in almost all cases. Specialist medical advice is of course essential to ensure the protocol is understood and followed correctly.
Patients will almost certainly require additional symptomatic treatment and supportive care. This must be specifically customized to the needs of the individual but could include mobility aids, hearing aids or cochlear implants, vision aids, gastrostomy feeding and assisted ventilation, while steroids may or may not help patients.
The first report of BVVL syndrome in Japanese literature was of a woman that had BVVL and showed improvement after such treatments. The patient was a sixty-year-old woman who had symptoms such as sensorineural deafness, weakness, and atrophy since she was 15 years old. Around the age of 49 the patient was officially diagnosed with BVVL, incubated, and then attached to a respirator to improve her CO2 narcosis. After the treatments, the patient still required respiratory assistance during sleep; however, the patient no longer needed assistance by a respirator during the daytime.
There is no cure for Alström syndrome; however, there are treatment aims to reduce the symptoms and prevent further complications. Some of these treatment aims include:
- Corrective lenses: tinted lenses that help with the sensitivity from bright lights. The patients may have to adapt to reading in Braille, use adaptive equipment, mobility aids, and adaptive computing skills.
- Education: patients with Alström syndrome suffering from intellectual disabilities must have access to education. They must be able to receive free and appropriate education. Some Alström syndrome patients are educated in normal classrooms. Other patients have to take special education classes or attend to specialized schools that are prepared to teach children with disabilities. Staff members from schools have to consult with patient's parents or caregivers in order to design an education plan based on the child's needs. In addition, the school may document the progress of the child in order to confirm that the child's needs are being met.
- Hearing aids: the battery-operated devices are available in three styles: behind the ear, in the ear, and inside the ear canal. Behind the ear aims for mild-to-profound hearing loss. In the ear aims for mild to severe hearing loss. Lastly, the canal device is aimed for mild to moderately severe hearing loss. Patients that have severe hearing loss may benefit from a cochlear implant.
- Diet: an appropriate and healthy diet is necessary for individuals with Alström syndrome because it could potentially decreases chances of obesity or diabetes.
- Occupational therapy: the therapist helps the child learn skills to help him or her perform basic daily tasks like eating, getting dressed, and communicating with others.
- Physical Activity: exercising reduces chances of being obese and helping control blood sugar levels.
- Dialysis: helps restore filtering function. With hemodialysis, a patient's blood circulates into an external filter and clean. The filtered blood is then returned into the body. With peritoneal dialysis, fluid containing dextrose is introduced into the abdomen by a tube. The solution then absorbs the wastes into the body and is then removed.
- Transplantation: patients that endure a kidney failure may undergo a kidney transplantation.
- Surgery: if the patient endures severe scoliosis or kyphosis, surgery may be required.
There is no cure for Ménière's disease but medications, diet, physical therapy and counseling, and some surgical approaches can be used to manage it.
While use of physical therapy early after the onset of MD is probably not useful due to the fluctuating disease course, physical therapy to help retraining of the balance system appears to be useful to reduce both subjective and objective deficits in balance over the longer term.
Treatment for the disease itself is nonexistent, but there are options for most of the symptoms. For example, one suffering from hearing loss would be given hearing aids, and those with Hirschsprung’s disorder can be treated with a colostomy.
In cases where the causes are environmental, the treatment is to eliminate or reduce these causes first of all, and then to fit patients with a hearing aid, especially if they are elderly. When the loss is due to heredity, total deafness is often the end result. On the one hand, persons who experience gradual deterioration of their hearing are fortunate in that they have learned to speak. Ultimately the affected person may bridge communication problems by becoming skilled in sign language, speech-reading, using a hearing aid, or accepting elective surgery to use a prosthetic devices such as a cochlear implant.
Treatment is only necessary if the degree of curvature is sufficient to cause disability or if it causes emotional distress. Splinting does not routinely correct the deformity. Surgical treatments are closing wedge osteotomy, opening wedge osteotomy, and reversed wedge osteotomy. Radiographs of the fingers are useful in planning the surgical procedure. Severe clinodactyly may require soft tissue alterations to the digit such as release of skin, extensor tendon relocation, and collateral ligament advancement.
Children with CHARGE syndrome will vary greatly in their abilities in the classroom: some may need little support, while some may require full-time support and individualized programs.
Taking each of the various affected body systems into account is vital to the success of the child in the educational setting.
An important step in dealing with abnormal behavior is understanding why it is occurring and helping the child learn more appropriate methods of communicating. Before a child reaches age 18 (or the age of maturity in their country) doctors and specialists need to be found that will follow the individual in adulthood.
Research for designing therapeutic trials is ongoing via the Washington University Wolfram Study Group, supported by The Ellie White Foundation for Rare Genetic Disorders and The Jack and J.T. Snow Scientific Research Foundation for Wolfram research.
Currently there is no effective therapy for dominant optic atrophy, and consequently, these patients are simply monitored for changes in vision by their eye-care professional. Children of patients should be screened regularly for visual changes related to dominant optic atrophy. Research is underway to further characterize the disease so that therapies may be developed.