Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Some mucoceles spontaneously resolve on their own after a short time. Others are chronic and require surgical removal. Recurrence may occur, and thus the adjacent salivary gland is excised as a preventive measure.
Several types of procedures are available for the surgical removal of mucoceles. These include laser and minimally-invasive techniques which means recovery times are reduced drastically.
Micro-marsupialization is an alternative procedure to surgical removal. Micro-marsupialization uses silk sutures in the dome of a cyst to allow new epithelialized drainage pathways. It is simpler, less traumatic, and well-tolerated by patients, especially children.
A non-surgical option that may be effective for a small or newly identified mucocele is to rinse the mouth thoroughly with salt water (one tablespoon of salt per cup) four to six times a day for a few days. This may draw out the fluid trapped underneath the skin without further damaging the surrounding tissue. If the mucocele persists, individuals should see a doctor to discuss further treatment.
Smaller cysts may be removed by laser treatment, larger cysts will have to be removed surgically in an operating room.
The first line of treatment for nasal polyps is topical steroids. Steroids decrease the inflammation of the sinus mucosa to decrease the size of the polyps and improve symptoms. Topical preparations are preferred in the form of a nasal spray, but are often ineffective for people with many polyps. Steroids by mouth often provide drastic symptom relief, but should not be taken for long periods of time due to their side effects. Because steroids only shrink the size and swelling of the polyp, people often have recurrence of symptoms once the steroids are stopped. Decongestants do not shrink the polyps, but can decrease swelling and provide some relief. Antibiotics are only recommended if the person has a co-occurring bacterial infection.
In people with nasal polyps caused by aspirin or NSAIDs, avoidance of these medications will help with symptoms. Aspirin desensitization has also been shown to be beneficial.
While most cases require no treatment, therapy options include cryotherapy, application of a topical salicylic acid compound, surgical and laser ablation.
Medications may be needed as an adjunct to assist the closure of the defect. Antibiotics can help control or prevent any sinus infections. Preoperative nasal decongestants usage can reduce any existing sinus inflammation which will aid surgical manipulation of the mucosa over the bone.
Treatment most commonly involves the removal of the complete lesion during a single procedure, via the frontonasal bone flaps; recurrence is likely. Ablation treatment with an looks to be a possibility for permanent removal.
Some success has been seen using intralesional injections of formalin, performed by endoscopy.
Endoscopic sinus surgery with removal of polyps is often very effective for most people providing rapid symptom relief. Endoscopic sinus surgery is minimally-invasive and is done entirely through the nostril with the help of a camera. Surgery should be considered for those with complete nasal obstruction, uncontrolled runny nose, nasal deformity caused by polyps or continued symptoms despite medical management. Surgery serves to remove the polyps as well as the surrounding inflamed mucosa, open obstructed nasal passages, and clear the sinuses. This not only removes the obstruction caused by the polyps themselves, but allows medications such as saline irrigations and topical steroids to become more effective.
Surgery lasts approximately 45 minutes to 1 hour and can be done under general or local anesthesia. Most patients tolerate the surgery without much pain, though this can vary from patient to patient. The patient should expect some discomfort, congestion, and drainage from the nose in the first few days after surgery, but this should be mild. Complications from endoscopic sinus surgery are rare, but can include bleeding and damage to other structures in the area including the eye or brain.
Many physicians recommend a course of oral steroids prior to surgery to reduce mucosal inflammation, decrease bleeding during surgery, and help with visualization of the polyps. Nasal steroid sprays should be used preventatively after surgery to delay or prevent recurrence. People often have recurrence of polyps even following surgery. Therefore, continued follow up with a combination of medical and surgical management is preferred for the treatment of nasal polyps.
Treatment may include the following:
- Surgery with or without radiation
- Radiotherapy
Fast neutron therapy has been used successfully to treat salivary gland tumors, and has shown to be significantly more effective than photons in studies treating unresectable salivary gland tumors.
- Chemotherapy
Following all methods of OAC/OAF closure, the patients are instructed to avoid activities that could produce pressure changes between the nasal passages and oral cavity for at least 2 weeks due to risk of disruption to the healing process. Nose blowing and sneezing with a closed mouth are prohibited. A soft diet is also often advocated during this period. Following surgery, nasal decongestants and prophylactic antibiotics are often prescribed to prevent postoperative infection.
All published findings on SNUC suggest that therapy that gives more than one kind of treatment (multimodality treatment) give SNUC patients the best possible chance for survival. Varying combinations of and length between surgery, radiation, and chemotherapy have been tested. Findings from Mendenhall et al. have suggest that surgery plus radiotherapy and concominant chemotherapy is most efficient rather thain radiotherapy combined with induced or maintenance chemotherapy.
Wide excision is the treatment of choice, although attempting to preserve hearing. Based on the anatomic site, it is difficult to completely remove, and so while there is a good prognosis, recurrences or persistence may be seen. There is no metastatic potential. Patients who succumb to the disease, usually do so because of other tumors within the von Hippel-Lindau complex rather than from this tumor.
Primary treatment for this cancer, regardless of body site, is surgical removal with clean margins. This surgery can prove challenging in the head and neck region due to this tumour's tendency to spread along nerve tracts. Adjuvant or palliative radiotherapy is commonly given following surgery. For advanced major and minor salivary gland tumors that are inoperable, recurrent, or exhibit gross residual disease after surgery, fast neutron therapy is widely regarded as the most effective form of treatment.
Chemotherapy is used for metastatic disease. Chemotherapy is considered on a case by case basis, as there is limited trial data on the positive effects of chemotherapy. Clinical studies are ongoing, however.
In order to remove it completely, surgery may be an option.It relieves the hydrocephalus (excess water in the brain) about half of the time.
Another treatment is chemotherapy, recommended for patients with severe problem.
Treatment of choroid plexus carcinoma depends on the location and severity of the tumor. Possible interventions include inserting shunts, surgical resection, radiotherapy, and chemotherapy. Inserting a shunt could help to drain the CSF and relieve pressure on the brain. The best outcomes occur when total resection of the tumor is combined with adjuvant chemotherapy and radiotherapy. In the event of subtotal resection or widespread leptomeningeal disease, craniospinal irradiation is often used.
Prognosis for this condition varies according to extent of the hematoma, but is normally fairly good. Smaller hematomae carry a 99% chance of full recovery, with larger ones carrying a recovery rate ranging from 80 to 90%. Occasional epistaxis may follow the surgery, but this is temporary and should subside within 2 to 3 weeks after surgery.
Another method of protracting inverted nipples is to have the nipple pierced. This method will only be effective if the nipple can be temporarily protracted. If pierced when protracted, the jewellery may prevent the nipple from returning to its inverted state. The success of both of these methods, from a cosmetic standpoint, is mixed. The piercing may actually correct the overly taut connective tissue to allow the nipple to become detached from underlying connective tissue and resume a more typical appearance.
Other strategies for protracting inverted nipples include regularly stimulating the nipples to a protruding state, in an attempt to gradually loosen the nipple tissue. Some sex toys designed for nipple stimulation, such as suction cups or clamps may also cause inverted nipples to protract or stay protracted longer. There are special devices specifically designed to draw out inverted nipples, or a home-made nipple protractor can be constructed out of a 10 ml disposable syringe. These methods are often used in preparation for breast-feeding, which can sometimes cause inverted nipples to become protracted permanently.
Two methods which are now discouraged are breast shells and the Hoffman technique. Breast shells may be used to apply gentle constant pressure to the areola to try to break any adhesions under the skin that are preventing the nipple from being drawn out. The shells are worn inside the bra. The Hoffman technique is a nipple stretching exercise that may help loosen the adhesions at the base of the nipple when performed several times a day. Although both techniques are heavily promoted, a 1992 study found that not only do shells and the Hoffman technique not promote more successful breastfeeding, but they may also actually disrupt it.
Immediate treatment is very important for someone with orbital cellulitis. Treatment typically involves intravenous (IV) antibiotics in the hospital and frequent observation (every 4–6 hours). Along with this several laboratory tests are run including a complete blood count, differential, and blood culture.
- Antibiotic therapy – Since orbital cellulitis is commonly caused by "Staphylococcus" and "Streptococcus" species both penicillins and cephalosporins are typically the best choices for IV antibiotics. However, due to the increasing rise of MRSA (methicillin-resistant "Staphylococcus aureus") orbital cellulitis can also be treated with Vancomycin, Clindamycin, or Doxycycline. If improvement is noted after 48 hours of IV antibiotics, healthcare professions can then consider switching a patient to oral antibiotics (which must be used for 2–3 weeks).
- Surgical intervention – An abscess can threaten the vision or neurological status of a patient with orbital cellulitis, therefore sometimes surgical intervention is necessary. Surgery typically requires drainage of the sinuses and if a subperiosteal abscess is present in the medial orbit, drainage can be performed endoscopically. Post-operatively, patients must follow up regularly with their surgeon and remain under close observation.
Although orbital cellulitis is considered an ophthalmic emergency the prognosis is good if prompt medical treatment is received.
Some patients have no symptoms, spontaneous remission, or a relapsing/remitting course, making it difficult to decide whether therapy is needed. In 2002, authors from Sapienza University of Rome stated on the basis of a comprehensive literature review that "clinical observation without treatment is advisable when possible."
Therapeutic options include surgery, radiation therapy, and chemotherapy. Surgery is used to remove single lymph nodes, central nervous system lesions, or localized cutaneous disease. In 2014, Dalia and colleagues wrote that for patients with extensive or systemic Rosai–Dorfman disease, "a standard of care has not been established" concerning radiotherapy and chemotherapy.
One approach used for treatment is embolization. A six-vessel angiogram is employed to determine the vascular supply to the fistula. Detachable coils, liquid embolic agents like NBCA, and onyx, or combinations of both are injected into the blood vessel to occlude the DAVF. Preoperative embolization can also be used to supplement surgery.
Treatment for fungal sinusitis can include surgical debridement; helps by slowing progression of disease thus allowing time for recovery additionally we see the options below:
- In the case of invasive fungal sinusitis, echinocandins, voriconazole, and amphoterecin (via IV) may be used
- For allergic fungal sinusitis, systemic corticosteroids like prednisolone, methylprednisolone are added for their anti-inflammatory effect, bronchodilators and expectorants help to clear secretions in the sinuses.
DAVFs are also managed surgically. The operative approach varies depending on the location of the lesion.
Stereotactic radiosurgery
Stereotactic radiosurgery is used obliterating DAVFs post-embolization, and is considered an important adjunct. Use of this method, however, is limited to benign DAVFs that have failed other treatments.
No treatment of seborrheic keratoses is necessary, except for aesthetic reasons. Since a slightly increased risk of localized infection caused by picking at the lesion has been described, if a lesion becomes itchy or irritated by clothing or jewelry, a surgical excision is generally recommended.
Small lesions can be treated with light electrocautery. Larger lesions can be treated with electrodesiccation and curettage, shave excision, or cryosurgery. When correctly performed, removal of seborrheic keratoses will not cause much visible scarring except in persons with dark skin tones.
For unconfirmed acute sinusitis, intranasal corticosteroids have not been found to be better than a placebo either alone or in combination with antibiotics. For cases confirmed by radiology or nasal endoscopy, treatment with corticosteroids alone or in combination with antibiotics is supported. The benefit, however, is small.
There is only limited evidence to support short treatment with oral corticosteroids for chronic rhinosinusitis with nasal polyps.
In a Meta-analysis study to conglomerate findings regarding 28 published papers including 158 patients presenting SNUC following up with patients for an average of 14 months showed that at the time of last follow up 25% of patients were alive with no evidence of the disease, 22.4% were alive with presence of the disease, and 52.6% were deceased due to the disease.