Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Initial treatment is supportive, with the use of agents to treat cholestasis and pruritus, including the following:
- Ursodeoxycholic acid
- Cholestyramine
- Rifampin
- Naloxone, in refractory cases
The partial external biliary diversion (PEBD) procedure is a surgical approach that diverts bile from the gallbladder externally into an ileostomy bag.
Patients should be supplemented with fat-soluble vitamins, and occasionally medium-chain triglycerides in order to improve growth.
When liver synthetic dysfunction is significant, patients should be listed for transplantation. Family members should be tested for PFIC mutations, in order to determine risk of transmission.
Extrahepatic cholestasis can usually be treated by surgery.
Pruritis in cholestatic jaundice is treated by Antihistamines, Ursodeoxycholic Acid, Phenobarbital
No pharmacologic treatment has been approved by the U.S. Food and Drug Administration for PSC. Some experts recommend a trial of ursodeoxycholic acid (UDCA), a bile acid occurring naturally in small quantities in humans, as it has been shown to lower elevated liver enzyme numbers in patients with PSC and has proven effective in other cholestatic liver diseases. However, UDCA has yet to be shown to clearly lead to improved liver histology and survival. Guidelines from the American Association for the Study of Liver Diseases and the American College of Gastroenterology do not support the use of UDCA but guidelines from the European Association for the Study of the Liver do endorse the use of moderate doses (13-15 milligrams per kilogram) of UDCA for PSC.
Supportive treatment for PSC symptoms is the cornerstone of management. These therapies are aimed at relieving symptoms such as itching with antipruritics (e.g. bile acid sequestrants such as (cholestyramine)); antibiotics to treat episodes of acute cholangitis; and vitamin supplements, as people with PSC are often deficient in fat-soluble vitamins (vitamin A, vitamin D, vitamin E, and vitamin K).
ERCP and specialized techniques may also be needed to help distinguish between a benign PSC stricture and a bile duct cancer (cholangiocarcinoma).
Liver transplantation is the only proven long-term treatment of PSC, although only a fraction of individuals with PSC will need it. Indications for transplantation include recurrent bacterial cholangitis, decompensated cirrhosis, hepatocellular carcinoma, hilar cholangiocarcinoma, and complications of portal hypertension. Not all patients are candidates for liver transplantation, and some will experience disease recurrence afterward.
There is no known cure, but medication may slow the progression so that a normal lifespan and quality of life may be attainable for many patients.
- Ursodeoxycholic acid (Ursodiol) is the most frequently used treatment. It helps reduce the cholestasis and improves liver function tests. It has a minimal effect on symptoms and whether it improves outcomes is controversial. A Cochrane review from 2012 did not show any significant benefits on important outcomes including mortality, liver transplantation or PBC symptoms, even if some biochemistry and histological parameters were improved.
- To relieve itching caused by bile acids in circulation, which are normally removed by the liver, cholestyramine (a bile acid sequestrant) may be prescribed to absorb bile acids in the gut and be eliminated, rather than re-enter the blood stream. Other drugs that do this include stanozolol, naltrexone and rifampicin.
- Specific treatment for fatigue, which may be debilitating in some patients, is limited and undergoing trials. Some studies indicate that Provigil (modafinil) may be effective without damaging the liver. Though modafinil is no longer covered by patents, the limiting factor in its use in the U.S. is cost. The manufacturer, Cephalon, has made agreements with manufacturers of generic modafinil to provide payments in exchange for delaying their sale of modafinil. The FTC has filed suit against Cephalon alleging anti-competitive behavior.
- People with PBC may have poor lipid-dependent absorption of Vitamins A, D, E, K. Appropriate supplementation is recommended when bilirubin is elevated.
- People with PBC are at elevated risk of developing osteoporosis and esophageal varices as compared to the general population and others with liver disease. Screening and treatment of these complications is an important part of the management of PBC.
- As in all liver diseases, consumption of alcohol is contraindicated.
- In advanced cases, a liver transplant, if successful, results in a favorable prognosis.
- The farnesoid X receptor agonist, obeticholic acid, which is a modified bile acid, was approved by the United States Food and Drug Administration on May 27, 2016, as an orphan drug in an accelerated approval program, based on its reduction in the level of the biomarker alkaline phosphatase, as a surrogate endpoint for clinical benefit. It is indicated for the treatment of PBC in combination with ursodeoxycholic acid in adults with an inadequate response to UDCA, or as monotherapy in adults unable to tolerate UDCA. Additional studies are being required to prove its clinical benefit.
The treatment depends on clinical features and the location of the biliary abnormality. When the disease is localized to one hepatic lobe, hepatectomy relieves symptoms and appears to remove the risk of malignancy. Good evidence suggests that malignancy complicates Caroli disease in roughly 7% of cases.
Antibiotics are used to treat the inflammation of the bile duct, and ursodeoxycholic acid is used for hepatolithiasis. Ursodiol is given to treat cholelithiasis. In diffuse cases of Caroli disease, treatment options include conservative or endoscopic therapy, internal biliary bypass procedures, and liver transplantation in carefully selected cases. Surgical resection has been used successfully in patients with monolobar disease. An orthotopic liver transplant is another option, used only when antibiotics have no effect, in combination with recurring cholangitis. With a liver transplant, cholangiocarcinoma is usually avoided in the long run.
Family studies are necessary to determine if Caroli disease is due to inheritable causes. Regular follow-ups, including ultrasounds and liver biopsies, are performed.
Treatment of hepatomegaly will vary depending on the cause of the liver enlargement and hence accurate diagnosis is the primary concern. In the case of auto-immune liver disease, prednisone and azathioprine may be used for treatment.
In the case of lymphoma the treatment options include single-agent (or multi-agent) chemotherapy and regional radiotherapy, also surgery may be an option in specific situations.Meningococcal group C conjugate vaccine are also used in some cases.
In primary biliary cirrhosis ursodeoxycholic acid helps the bloodstream remove bile which may increase survival in some affected individuals.
Most (>95%) infants with biliary atresia will undergo an operation designed to retain and salvage the native liver, restore bile flow and reduce the level of jaundice. This is known as the Kasai procedure (after Morio Kasai, the Japanese surgeon who first developed the technique) or hepatoportoenterostomy. Although the procedure is not thought of as curative, it may relieve jaundice, and stop liver fibrosis allowing normal growth and development. Published series from Japan, North America and the UK show that bilirubin levels will fall to normal values in about 50-55% of infants allowing 40-50% to retain their own liver to reach the age of 5 and 10 years (and beyond). Liver transplantation is an option for those children whose liver function and symptoms fail to respond to a Kasai operation.
Recent large-scale studies by Davenport et al. ("Annals of Surgery", 2008) show that the age of the patient is not an absolute clinical factor affecting prognosis. The influence of age differs according to the disease etiology—i.e., whether biliary atresia is isolated, cystic (CBA), or accompanied by splenic malformation (BASM).
It is widely accepted that corticosteroid treatment after a Kasai operation, with or without choleretics and antibiotics, has a beneficial effect on postoperative bile flow and can clear jaundice, but the dosing and duration of the ideal steroid protocol are controversial. Furthermore, it has been observed in many retrospective longitudinal studies that corticosteroid treatment does not prolong survival of the native liver or transplant-free survival. Davenport et al. also showed ("Hepatology" 2007) that short-term, low-dose steroid therapy following a Kasai operation had no effect on the mid- or long-term prognosis of biliary atresia patients.
Simple cholecystectomy is suitable for type I patients. For types II–IV, subtotal cholecystectomy can be performed to avoid damage to the main bile ducts. Cholecystectomy and bilioenteric anastomosis may be required. Roux-en-Y hepaticojejunostomy has shown good outcome in some studies.
If the tumor can be removed surgically, patients may receive adjuvant chemotherapy or radiation therapy after the operation to improve the chances of cure. If the tissue margins are negative (i.e. the tumor has been totally ), adjuvant therapy is of uncertain benefit. Both positive and negative results have been reported with adjuvant radiation therapy in this setting, and no prospective randomized controlled trials have been conducted as of March 2007. Adjuvant chemotherapy appears to be ineffective in patients with completely resected tumors. The role of combined chemoradiotherapy in this setting is unclear. However, if the tumor tissue margins are positive, indicating that the tumor was not completely removed via surgery, then adjuvant therapy with radiation and possibly chemotherapy is generally recommended based on the available data.
The majority of cases of cholangiocarcinoma present as inoperable (unresectable) disease in which case patients are generally treated with palliative chemotherapy, with or without radiotherapy. Chemotherapy has been shown in a randomized controlled trial to improve quality of life and extend survival in patients with inoperable cholangiocarcinoma. There is no single chemotherapy regimen which is universally used, and enrollment in clinical trials is often recommended when possible. Chemotherapy agents used to treat cholangiocarcinoma include 5-fluorouracil with leucovorin, gemcitabine as a single agent, or gemcitabine plus cisplatin, irinotecan, or capecitabine. A small pilot study suggested possible benefit from the tyrosine kinase inhibitor erlotinib in patients with advanced cholangiocarcinoma.
AIP often completely resolves with steroid treatment. The failure to differentiate AIP from malignancy may lead to unnecessary pancreatic resection, and the characteristic lymphoplasmacytic infiltrate of AIP has been found in up to 23% of patients undergoing pancreatic resection for suspected malignancy who are ultimately found to have benign disease. In this subset of patients, a trial of steroid therapy may have prevented a Whipple procedure or complete pancreatectomy for a benign disease which responds well to medical therapy. "This benign disease resembles pancreatic carcinoma both clinically and radiographically. The diagnosis of autoimmune pancreatitis is challenging to make. However, accurate and timely diagnosis may preempt the misdiagnosis of cancer and decrease the number of unnecessary pancreatic resections." Autoimmune pancreatitis responds dramatically to corticosteroid treatment.
If relapse occurs after corticosteroid treatment or corticosteroid treatment is not tolerated, immunomodulators may be used. Immunomodulators such as azathioprine, and 6-mercaptopurine have been shown to extend remission of autoimmune pancreatitis after corticosteroid treatment. If corticosteroid and immunomodulator treatments are not sufficient, rituximab may also be used. Rituximab has been shown to induce and maintain remission.
Treatment is dependent upon the underlying cause. Treatment is supportive as it is not possible to induce regrowth of lost ducts.
Laparoscopic cholecystectomy has been used to treat the condition when due to dyskinesia of the gallbladder.
Symptoms may persist after cholecystectomy, and have been linked to the use of proton pump inhibitors.
Osteopathic treatment, oral magnesium supplementation with 325 mg and the use of digestive enzymes caused improvement in one case.
Treatment involves an operation called a choledocholithotomy, which is the removal of the gallstone from the bile duct using ERCP, although surgeons are now increasingly using laparoscopy with cholangiography. In this procedure, tiny incisions are made in the abdomen and then in the cystic duct that connects the gallbladder to the bile duct, and a thin tube is introduced to perform a cholangiography. If stones are identified, the surgeon inserts a tube with an inflatable balloon to widen the duct and the stones are usually removed using either a balloon or tiny basket.
If laparoscopy is unsuccessful, an open choledocholithotomy is performed. This procedure may be used in the case of large stones, when the duct anatomy is complex, during or after some gallbladder operations when stones are detected, or when ERCP or laparoscopic procedures are not available.
Typically, the gallbladder is then removed, an operation called cholecystectomy, to prevent a future occurrence of common bile duct obstruction or other complications.
Cholangitis requires admission to hospital. Intravenous fluids are administered, especially if the blood pressure is low, and antibiotics are commenced. Empirical treatment with broad-spectrum antibiotics is usually necessary until it is known for certain which pathogen is causing the infection, and to which antibiotics it is sensitive. Combinations of penicillins and aminoglycosides are widely used, although ciprofloxacin has been shown to be effective in most cases, and may be preferred to aminoglycosides because of fewer side effects. Metronidazole is often added to specifically treat the anaerobic pathogens, especially in those who are very ill or at risk of anaerobic infections. Antibiotics are continued for 7–10 days. Drugs that increase the blood pressure (vasopressors) may also be required to counter the low blood pressure.
Early treatment is possible once the disease is detected. Once the classical symptoms appear, the best way to eliminate the dangers of Alagille syndrome is a full liver transplant. Most of the short-term treatments available are aimed at improving the functioning of the heart and reducing the effects of impaired liver, kidney, and spleen function.
Several medications are used to improve bile flow, including ursodiol (Actigall).These medications differ in their rates of success.
Certain drugs may be used to reduce itching (pruritus): hydroxyzine (Atarax), cholestyramine, rifampicin, phenobarbital, and naltrexone. Similar to the medications which improve bile flow, the anti-itching drugs vary in their success rate.
Many patients with Alagille syndrome will also benefit from a high dose of a multivitamin such as ADEK (continuing high levels of vitamins A, D, E, and K), as the reduced bile flow makes it difficult to absorb and utilize these vitamins.
Partial surgical resection is the optimal treatment for hepatocellular carcinoma (HCC) when patients have sufficient hepatic function reserve. Increased risk of complications such as liver failure can occur with resection of cirrhotic (i.e. less-than-optimally functional) livers. 5-year survival rates after resection have massively improved over the last few decades and can now exceed 50%. However, recurrence rates after resection can exceed 70%, whether due to spread of the initial tumor or formation of new tumors . Liver transplantation can also be considered in cases of HCC where this form of treatment can be tolerated and the tumor fits specific criteria (such as the Milan criteria). In general, patients who are being considered for liver transplantation have multiple hepatic lesions, severe underlying liver dysfunction, or both. Less than 30-40% of individuals with HCC are eligible for surgery and transplant because the cancer is often detected at a late stage. Also, HCC can progress during the waiting time for liver transplants, which can prevent transplant due to the strict criteria.
Percutaneous ablation is the only non-surgical treatment that can offer cure. There are many forms of percutaneous ablation, which consist of either injecting chemicals into the liver (ethanol or acetic acid) or producing extremes of temperature using radio frequency ablation, microwaves, lasers or cryotherapy. Of these, radio frequency ablation has one of the best reputations in HCC, but the limitations include inability to treat tumors close to other organs and blood vessels due to heat generation and the heat sink effect, respectively. In addition, long-term of outcomes of percutaneous ablation procedures for HCC have not been well studied. In general, surgery is the preferred treatment modality when possible.
Systemic chemotherapeutics are not routinely used in HCC, although local chemotherapy may be used in a procedure known as transarterial chemoembolization. In this procedure, cytotoxic drugs such as doxorubicin or cisplatin with lipiodol are administered and the arteries supplying the liver are blocked by gelatin sponge or other particles. Because most systemic drugs have no efficacy in the treatment of HCC, research into the molecular pathways involved in the production of liver cancer produced sorafenib, a targeted therapy drug that prevents cell proliferation and blood cell growth. Sorafenib obtained FDA approval for the treatment of advanced hepatocellular carcinoma in November 2007. This drug provides a survival benefit for advanced HCC.
Radiotherapy is not often used in HCC because the liver is not tolerant to radiation. Although with modern technology it is possible to provide well-targeted radiation to the tumor, minimizing the dose to the rest of the liver. Dual treatments of radiotherapy plus chemoembolization, local chemotherapy, systemic chemotherapy or targeted therapy drugs may show benefit over radiotherapy alone.
Cholesterol gallstones can sometimes be dissolved with ursodeoxycholic acid taken by mouth, but it may be necessary for the person to take this medication for years. Gallstones may recur, however, once the drug is stopped. Obstruction of the common bile duct with gallstones can sometimes be relieved by endoscopic retrograde sphincterotomy (ERS) following endoscopic retrograde cholangiopancreatography (ERCP). Gallstones can be broken up using a procedure called extracorporeal shock wave lithotripsy (often simply called "lithotripsy"), which is a method of concentrating ultrasonic shock waves onto the stones to break them into tiny pieces. They are then passed safely in the feces. However, this form of treatment is suitable only when there is a small number of gallstones.
Although there is no curative treatment, several clinical trials are underway that aim to slow progression of this liver disease. Obeticholic acid is being investigated as a possible treatment for PSC due to its antifibrotic effects. Simtuzumab is a monoclonal antibody against the pro-fibrotic enzyme LOXL2 that is being developed as a possible therapy for PSC.
Resection is an option in cholangiocarcinoma, but less than 30% of cases of cholangiocarcinoma are resectable at diagnosis. After surgery, recurrence rates are up to 60%. Liver transplant may be used where partial resection is not an option, and adjuvant chemoradiation may benefit some cases.
60% of cholangiocarcinomas form in the perihilar region and photodynamic therapy can be used to improve quality of life and survival time in these unresectable cases. Photodynamic therapy is a novel treatment that utilitizes light activated molecules to treat the tumor. The compounds are activated in the tumor region by laser light, which causes the release of toxic reactive oxygen species, killing tumor cells.
Systemic chemotherapies such as gemcitabine and cisplatin are sometimes used in inoperable cases of cholangiocarcinoma.
Radio frequency ablation, transarterial chemoembolization and internal radiotherapy (brachytherapy) all show promise in the treatment of cholangiocarcinoma.
Radiotherapy may be used in the adjuvant setting or for palliative treatment of cholangiocarcinoma.
Surgical treatment is best, when it can be performed. Pressure within the portal vein is measured as the shunt is closed, and it must be kept below 20 cm HO or else portal hypertension will ensue. Methods of shunt attenuation should aim to slowly occlude the vessel over several weeks to months in order to avoid complications associated with portal hypertension. These methods include ameroid ring constrictors, cellophane banding, intravascular or percutaneous silicone hydraulic occluders. The most common methods of attenuation used by veterinarians are ameroid ring constrictors and cellophane banding. Both methods have reportedly good outcomes in both cats and dogs, although the true composition of readily sourced cellophane has been found to be made from plastics (inert) and not cellulose (stimulates a fibrous reaction). Recently, a commercial supplier of regenerated cellulose based cellophane for veterinarians has been established for use of cellophane banding for portosystemic shunts in dogs and cats. Complete closure of extrahepatic shunts results in a very low recurrence rate, while incomplete closure results in a recurrence rate of about 50 percent. However, not all dogs with extrahepatic shunts tolerate complete closure (16 to 68 percent). Intrahepatic shunts are much more difficult to surgically correct than extrahepatic shunts due to their hidden nature, large vessel size, and greater tendency toward portal hypertension when completely closed. When surgery is not an option, PSS is treated as are other forms of liver failure. Dietary protein restriction is helpful to lessen signs of hepatic encephalopathy, and antibiotics such as neomycin or metronidazole and other medicines such as lactulose can reduce ammonia production and absorption in the intestines. The prognosis is guarded for any form of PSS.
The definitive treatment for cholangitis is relief of the underlying biliary obstruction. This is usually deferred until 24–48 hours after admission, when the patient is stable and has shown some improvement with antibiotics, but may need to happen as an emergency in case of ongoing deterioration despite adequate treatment, or if antibiotics are not effective in reducing the signs of infection (which happens in 15% of cases).
Endoscopic retrograde cholangiopancreatography (ERCP) is the most common approach in unblocking the bile duct. This involves endoscopy (passing a fiberoptic tube through the stomach into the duodenum), identification of the ampulla of Vater and insertion of a small tube into the bile duct. A sphincterotomy (making a cut in the sphincter of Oddi) is typically done to ease the flow of bile from the duct and to allow insertion of instruments to extract gallstones that are obstructing the common bile duct; alternatively or additionally, the common bile duct orifice can be dilated with a balloon. Stones may be removed either by direct suction or by using various instruments, including balloons and baskets to trawl the bile duct in order to pull stones into the duodenum. Obstructions that are caused by larger stones may require the use of an instrument known as a mechanical lithotriptor in order to crush the stone prior to removal. Obstructing stones that are too large to be removed or broken mechanically by ERCP may be managed by extracorporeal shock wave lithotripsy. This technique uses acoustic shock waves administered outside the body to break down the stones. An alternative technique to remove very large obstructing stones is electrohydraulic lithotripsy, where a small endoscope known as a cholangioscope is inserted by ERCP to directly visualize the stone. A probe uses electricity to generate shock waves that break down the obstructing stone. Rarely, surgical exploration of the common bile duct (termed choledochotomy), which can be performed with laparoscopy, is required to remove the stone.
Narrowed areas may be bridged by a stent, a hollow tube that keeps the duct open. Removable plastic stents are used in uncomplicated gallstone disease, while permanent self-expanding metal stents with a longer lifespan are used if the obstruction is due to pressure from a tumor such as pancreatic cancer. A nasobiliary drain may be left behind; this is a plastic tube that passes from the bile duct through the stomach and the nose and allows continuous drainage of bile into a receptible. It is similar to a nasogastric tube, but passes into the common bile duct directly, and allows for serial x-ray cholangiograms to be done to identify the improvement of the obstruction. The decision on which of the aforementioned treatments to apply is generally based on the severity of the obstruction, findings on other imaging studies, and whether the patient has improved with antibiotic treatment. Certain treatments may be unsafe if blood clotting is impaired, as the risk of bleeding (especially from sphincterotomy) is increased in the use of medication such as clopidogrel (which inhibits platelet aggregation) or if the prothrombin time is significantly prolonged. For a prolonged prothrombin time, vitamin K or fresh frozen plasma may be administered to reduce bleeding risk.
Cholecystectomy (gallbladder removal) has a 99% chance of eliminating the recurrence of cholelithiasis. Surgery is only indicated in symptomatic patients. The lack of a gallbladder may have no negative consequences in many people. However, there is a portion of the population—between 10 and 15%—who develop a condition called postcholecystectomy syndrome which may cause gastrointestinal distress and persistent pain in the upper-right abdomen, as well as a 10% risk of developing chronic diarrhea.
There are two surgical options for cholecystectomy:
- Open cholecystectomy is performed via an abdominal incision (laparotomy) below the lower right ribs. Recovery typically requires 3–5 days of hospitalization, with a return to normal diet a week after release and to normal activity several weeks after release.
- Laparoscopic cholecystectomy, introduced in the 1980s, is performed via three to four small puncture holes for a camera and instruments. Post-operative care typically includes a same-day release or a one night hospital stay, followed by a few days of home rest and pain medication. Laparoscopic cholecystectomy patients can, in general, resume normal diet and light activity a week after release, with some decreased energy level and minor residual pain continuing for a month or two. Studies have shown that this procedure is as effective as the more invasive open cholecystectomy, provided the stones are accurately located by cholangiogram prior to the procedure so that they can all be removed.
These lesions rarely require surgery unless they are symptomatic or the diagnosis is in question. Since these lesions do not have malignant potential, long-term observation is unnecessary. Surgery can include the removal of the head of the pancreas (a pancreaticoduodenectomy), removal of the body and tail of the pancreas (a distal pancreatectomy), or rarely removal of the entire pancreas (a total pancreatectomy). In selected cases the surgery can be performed using minimally invasive techniques such as laparoscopy.