Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There are two drugs available, praziquantel and oxamniquine, for the treatment of schistosomiasis. They are considered equivalent in relation to efficacy against "S. mansoni" and safety. Because of praziquantel's lower cost per treatment, and oxaminiquine's lack of efficacy against the urogenital form of the disease caused by "S. haematobium", in general praziquantel is considered the first option for treatment. The treatment objective is to cure the disease and to prevent the evolution of the acute to the chronic form of the disease. All cases of suspected schistosomiasis should be treated regardless of presentation because the adult parasite can live in the host for years.
Schistosomiasis is treatable by taking by mouth a single dose of the drug praziquantel annually.
The WHO has developed guidelines for community treatment based on the impact the disease has on children in villages in which it is common:
- When a village reports more than 50 percent of children have blood in their urine, everyone in the village receives treatment.
- When 20 to 50 percent of children have bloody urine, only school-age children are treated.
- When fewer than 20 percent of children have symptoms, mass treatment is not implemented.
Other possible treatments include a combination of praziquantel with metrifonate, artesunate, or mefloquine. A Cochrane review found tentative evidence that when used alone, metrifonate was as effective as praziquantel.
Another agent, mefloquine, which has previously been used to treat and prevent malaria, was recognised in 2008–2009 to be effective against "Schistosoma".
Broad-spectrum benzimidazoles (such as albendazole and mebendazole) are the first line treatment of intestinal roundworm and tapeworm infections. Macrocyclic lactones (such as ivermectin) are effective against adult and migrating larval stages of nematodes. Praziquantel is the drug of choice for schistosomiasis, taeniasis, and most types of food-borne trematodiases. Oxamniquine is also widely used in mass deworming programmes. Pyrantel is commonly used for veterinary nematodiasis. Artemisinins and derivatives are proving to be candidates as drugs of choice for trematodiasis.
Isosporiasis is treated with prescription antibiotics, the treatment of choice is trimethoprim-sulfamethoxazole.
Drugs are frequently used to kill parasites in the host. In earlier times, turpentine was often used for this, but modern drugs do not poison intestinal worms directly. Rather, anthelmintic drugs now inhibit an enzyme that is necessary for the worm to make the substance that prevents the worm from being digested.
For example, tapeworms are usually treated with a medicine taken by mouth. The most commonly used medicine for tapeworms is praziquantel.
If complications of helminthiasis, such as intestinal obstruction occur, emergency surgery may be required. Patients who require non-emergency surgery, for instance for removal of worms from the biliary tree, can be pre-treated with the anthelmintic drug albendazole.
Avoiding food or water that may be contaminated with stool can help prevent the infection of "Cystoisospora" (Isosporiasis). Good hand-washing, and personal-hygiene practices should be used as well. One should wash their hands with soap and warm water after using the toilet, changing diapers, and before handling food (CDC.gov). It is also important to teach children the importance of washing their hands, and how to properly wash their hands.
Chloroquine was used unsuccessfully in attempts to treat opisthorchiasis in 1951-1968. Control of opisthorchiasis relies predominantly on antihelminthic treatment with praziquantel. The single dose of praziquantel of 40 mg/kg is effective against opisthorchiasis (and also against schistosomiasis). Despite the efficacy of this compound, the lack of an acquired immunity to infection predisposes humans to reinfections in endemic regions. In addition, under experimental conditions, the short-term treatment of "Opisthorchis viverrini"-infected hamsters with praziquantel (400 mg per kg of live weight) induced a dispersion of parasite antigens, resulting in adverse immunopathological changes as a result of oxidative and nitrative stresses following re-infection with "Opisthorchis viverrini", a process which has been proposed to initiate and/or promote the development of cholangiocarcinoma in humans. Albendazole can be used as an alternative.
A randomised-controlled trial published in 2011 showed that the broad-spectrum anti-helminthic, tribendimidine, appears to be at least as efficacious as praziquantel. Artemisinin was also found to have anthelmintic activity against "Opisthorchis viverrini".
Good hygiene is necessary to avoid reinfection. The Rockefeller Foundation's hookworm campaign in Mexico in the 1920s was extremely effective at eliminating hookworm from humans with the use of anthelmintics. However, preventative measures were not adequately introduced to the people that were treated. Therefore, the rate of reinfection was extremely high and the project evaluated through any sort of scientific method was a marked failure. More education was needed to inform the people of the importance of wearing shoes, using latrines (better access to sanitation), and good hygiene.
Intestinal parasite prevention methods are not isolated to specific geographical areas; however, many of the research-based interventions have primarily taken place in underdeveloped countries and regions, where sanitation is a large concern for spreading disease.Current best practice behaviors that prevent intestinal parasites include: using proper hand washing practices, using correctly-built latrines with ample ventilation, having a piped water source, and wearing shoes. Currently, in some parts of Ethiopia where disease prevalence is high, up to 80% of people in a population lack access to washing facilities. While is this high, 93% did have access to a latrine, but only 29.2% of those latrines had proper construction to decrease parasitic infections.Behavioral interventions have focused on promoting washing, sometimes with soap, in context of education at schools and child care facilities. In recent studies, the best interventions follow a multidisciplinary approach by:
- Increasing environmental sanitation to promote hand washing and shoe wearing habits
- Educating children at young ages at school and at home
Specific evidence-based interventions that may lower disease prevalence include:
- Interventions at schools, focusing on the construction of pit latrines (ventilated and improved), providing clean drinking water and educating the students about hygiene
- The SAFE (surgery, antibiotics, facial cleanliness, environmental sanitation) strategy to address trachoma, primarily the facial cleanliness and the environmental sanitation components
- Hand-washing with soap at critical times and nail clipping to decrease reinfection rates, although further research is needed to develop and implement similar interventions at scale
- Programs combining anthelmintic drug administration with interventions to increase environmental sanitation (such as decreasing fecal contamination)
For many years from the 1950s onwards, vast dams and irrigation schemes were constructed, causing a massive rise in water-borne infections from schistosomiasis. The detailed specifications laid out in various UN documents since the 1950s could have minimized this problem. Irrigation schemes can be designed to make it hard for the snails to colonize the water and to reduce the contact with the local population. Even though guidelines on how to design these schemes to minimise the spread of the disease had been published years before, the designers were unaware of them. The dams appear to have reduced the population of the large migratory prawn "Macrobrachium". After the construction of fourteen large dams, greater increases in schistosomiasis occurred in the historical habitats of native prawns than in other areas. Further, at the 1986 Diama Dam on the Senegal River, restoring prawns upstream of the dam reduced both snail density and the human schistosomiasis reinfection rate.
Effective prevention could be readily achieved by persuading people to consume cooked fish (via education programs), but the ancient cultural custom to consume raw, undercooked or freshly pickled fish persists in endemic areas. One community health program, known as the "Lawa" model, has achieved success in the Lawa Lakes region south of Khon Kaen. Currently, there is no effective chemotherapy to combat cholangiocarcinoma, such that intervention strategies need to rely on the prevention or treatment of liver fluke infection/disease.
Cooking or deep-freezing (-20 °C for 7 days) of food made of fish is sure method of prevention. Methods for prevention of "Opisthorchis viverrini" in aquaculture fish ponds were proposed by Khamboonruang et al. (1997).
Inclusion of NTDs into initiatives for malaria, HIV/AIDS, and tuberculosis, as well as integration of NTD treatment programs, may have advantages given the strong link between these diseases and NTDs. Some neglected tropical diseases share common vectors (sandflies, black flies, and mosquitos). Both medicinal and vector control efforts may be combined.
A four-drug rapid-impact package has been proposed for widespread proliferation. Administration may be made more efficient by targeting multiple diseases at once, rather than separating treatment and adding work to community workers. This package is estimated to cost US$0.40 per patient. When compared to stand-alone treatment, the savings are estimated to be 26–47%. While more research must be done in order to understand how NTDs and other diseases interact in both the vector and the human stages, safety assessments have so far produced positive results.
Many neglected tropical diseases and other prevalent diseases share common vectors, creating another opportunity for treatment and control integration. One such example of this is malaria and lymphatic filariasis. Both diseases are transmitted by the same or related mosquito vectors. Vector control, through the distribution of insecticide treated nets, reduces the human contact with a wide variety of disease vectors. Integrated vector control may also alleviate pressure on mass drug administration, especially with respect to rapidly evolving drug resistance. Combining vector control and mass drug administration deemphasizes both, making each less susceptible to resistance evolution.
Some of the strategies for controlling tropical diseases include:
- Draining wetlands to reduce populations of insects and other vectors, or introducing natural predators of the vectors.
- The application of insecticides and/or insect repellents) to strategic surfaces such as clothing, skin, buildings, insect habitats, and bed nets.
- The use of a mosquito net over a bed (also known as a "bed net") to reduce nighttime transmission, since certain species of tropical mosquitoes feed mainly at night.
- Use of water wells, and/or water filtration, water filters, or water treatment with water tablets to produce drinking water free of parasites.
- Sanitation to prevent transmission through human waste.
- In situations where vectors (such as mosquitoes) have become more numerous as a result of human activity, a careful investigation can provide clues: for example, open dumps can contain stagnant water that encourage disease vectors to breed. Eliminating these dumps can address the problem. An education campaign can yield significant benefits at low cost.
- Development and use of vaccines to promote disease immunity.
- Pharmacologic pre-exposure prophylaxis (to prevent disease before exposure to the environment and/or vector).
- Pharmacologic post-exposure prophylaxis (to prevent disease after exposure to the environment and/or vector).
- Pharmacologic treatment (to treat disease after infection or infestation).
- Assisting with economic development in endemic regions. For example, by providing microloans to enable investments in more efficient and productive agriculture. This in turn can help subsistence farming to become more profitable, and these profits can be used by local populations for disease prevention and treatment, with the added benefit of reducing the poverty rate.
- Hospital for Tropical Diseases
- Tropical medicine
- Infectious disease
- Neglected diseases
- List of epidemics
- Waterborne diseases
- Globalization and disease
Dysentery is managed by maintaining fluids by using oral rehydration therapy. If this treatment cannot be adequately maintained due to vomiting or the profuseness of diarrhea, hospital admission may be required for intravenous fluid replacement. In ideal situations, no antimicrobial therapy should be administered until microbiological microscopy and culture studies have established the specific infection involved. When laboratory services are not available, it may be necessary to administer a combination of drugs, including an amoebicidal drug to kill the parasite, and an antibiotic to treat any associated bacterial infection.
If shigellosis is suspected and it is not too severe, letting it run its course may be reasonable — usually less than a week. If the case is severe, antibiotics such as ciprofloxacin or TMP-SMX may be useful. However, many strains of "Shigella" are becoming resistant to common antibiotics, and effective medications are often in short supply in developing countries. If necessary, a doctor may have to reserve antibiotics for those at highest risk for death, including young children, people over 50, and anyone suffering from dehydration or malnutrition.
Amoebic dysentery is often treated with two antimicrobial drug such as metronidazole and paromomycin or iodoquinol.
Biotechnology companies in the developing world have targeted neglected tropical diseases due to need to improve global health.
Mass drug administration is considered a possible method for eradication, especially for lymphatic filariasis, onchocerciasis, and trachoma, although drug resistance is a potential problem. According to Fenwick, Pfizer donated 70 million doses of drugs in 2011 to eliminate trachoma through the International Trachoma Initiative. Merck has helped The African Programme for the Control of Onchocerciasis (APOC) and Oncho Elimination Programme for the Americas to greatly diminished the effect of Onchocerciasis by donating ivermectin. Merck KGaA pledged to give 200 million tablets of praziquantel over 10 years, the only cure for schistosomiasis. GlaxoSmithKline has donated two billion tablets of medicine for lymphatic filariasis and pledged 400 million deworming tablets per year for five years in 2010. Johnson & Johnson has pledged 200 million deworming tablets per year. Novartis has pledged leprosy treatment, EISAI pledged two billion tablets to help treat lymphatic filariasis.
The introduction of cinchona into therapeutics was due to the discovery of its efficacy in malaria. In 1921, John used quinine hydrochloride, an alkaloid of cinchona in the treatment of amoebic liver abscess.
Later when synthetic derivatives of quinine were introduced, chloroquine phosphate, a 4-aminoquinoline was found to be less toxic than the parent drug. The drug was first quoted in the treatment of this condition in very early reports by Conan (1948)15, Murgatroyd and Kent (1948).
It is absorbed rapidly and completely from the gastrointestinal tract. It is found to be very effective in invasive amoebiasis although the drug is a weaker amoebicide when compared to emetine. It is only feebly amoebicidal in the intestinal lumen.
The high concentration in the liver parenchyma and the lung allows the drug to act upon E. Histolytica in cases of amoebic liver abscess and pleuropulmonary amoebiasis.
It is usually well tolerated, but in some individuals it may cause mild headache, itching, nausea, vomiting or blurred vision. Rarely incoordination, convulsions, peripheral neuritis and bleaching of hair can occur. Diminution of T waves has been noticed on routine electrocardiographic recordings. Retinopathy does not occur with the usual dosage for amoebic liver abscess. Psychic disturbances though rare may interfere with the safe operation of machines and vehicles. The drug may be toxic to children in large doses18 and causes deafness in the foetus.
Each 0.5 G. tablet contains chloroquine diphosphate equivalent to 0.3 G. of the base. For the treatment of amoebic liver abscess, it is administered in doses of 0.6 G. base per day in 2 to 3 divided doses orally for 2 days followed by 0.15 G. base twice daily for 2 to 3 weeks. However, Plorde recommends that it be given as 0.6 G. base initially, 0.3 G. base six hours later and then 0.3 G. base twice daily for fourteen to twenty eight days.19 Chloroquine is also available in an injectable form. Since it is quite toxic by this route, it should not be used for more than 24–48 hours after which oral therapy should be continued. Rarely, when patients of amoebic liver abscess are vomiting, injection chloroquine can be used in a dose of 0.3–0.6 G. base in 24 hours not exceeding 0.9 G.).
Chloroquine given alone is a safer drug than emetine in amoebic liver abscess, but unfortunately the relapse rate is almost 25%. Rarely repetition of the course may induce a dramatic response.
Control requires treatment of antibiotics and vaccines prescribed by a doctor. Major control treatments for paratyphoid fever include ciprofloxacin for ten days, ceftriaxone/cefotaxime for 14 days, or aziththromycin.
Until 1964, all available amoebicides were selective in their sites of action. The development of newer nitro-imidazole derivatives led to Niridazole. It was given in a daily dose of 25–30 mgm. per kg to 50 patients for seven days. The cure rate was found to be 84% with serious side effects in one patient. An Indian study of 30 patients on this drug revealed that it acted as a contact amoebicide and also against the invasive forms.23 The therapeutic action of Ambilhar was found to be significantly better than that produced by a combination of dehydroemetine and chloroquine.
Those diagnosed with Type A of the bacterial strain rarely die from it except in rare cases of severe intestinal complications. With proper testing and diagnosis, the mortality rate falls to less than 1%. Antibiotics such as azithromycin are particularly effective in treating the bacteria.
With correct treatment, most cases of amoebic and bacterial dysentery subside within 10 days, and most individuals achieve a full recovery within two to four weeks after beginning proper treatment. If the disease is left untreated, the prognosis varies with the immune status of the individual patient and the severity of disease. Extreme dehydration can delay recovery and significantly raises the risk for serious complications.
Various strategies targeting the mollusc and avian hosts of schistosomes, have been used by lakeside residents in recreational areas of North America to deal with outbreaks of swimmer's itch. In Michigan, for decades, authorities used copper sulfate as a molluscicide to reduce snail host populations and thereby the incidence of swimmer's itch. The results with this agent have been inconclusive, possibly because:
- Snails become tolerant
- Local water chemistry reduces the molluscicide's efficacy
- Local currents diffuse it
- Adjacent snail populations repopulate a treated area
More importantly, perhaps, copper sulfate is toxic to more than just molluscs, and the effects of its use on aquatic ecosystems are not well understood.
Another method targeting the snail host, mechanical disturbance of snail habitat, has been also tried in some areas of North America and Lake Annecy in France, with promising results. Some work in Michigan suggests that administering praziquantel to hatchling waterfowl can reduce local swimmer's itch rates in humans. Work on schistosomiasis showed that water-resistant topical applications of the common insect repellent DEET prevented schistosomes from penetrating the skin of mice. Public education of risk factors, a good alternative to the aforementioned interventionist strategies, can also reduce human exposure to cercariae.
Parasitic worms have been used as a medical treatment for various diseases, particularly those involving an overactive immune response. As humans have evolved with parasitic worms, proponents argue they are needed for a healthy immune system. Scientists are looking for a connection between the prevention and control of parasitic worms and the increase in allergies such as hay-fever in developed countries. Parasitic worms may be able to damp down the immune system of their host, making it easier for them to live in the intestine without coming under attack. This may be one mechanism for their proposed medicinal effect.
One study suggests a link between the rising rates of metabolic syndrome in the developed worlds and the largely successful efforts of Westerners to eliminate intestinal parasites. The work suggests eosinophils (a type of white blood cell) in fat tissue play an important role in preventing insulin resistance by secreting interleukin 4, which in turn switches macrophages into "alternative activation". Alternatively-activated macrophages are important to maintaining glucose homeostasis (i.e., blood sugar regulation). Helminth infection causes an increase in eosinophils. In the study, the authors fed rodents a high-fat diet to induce metabolic syndrome, and then injected them with helminths. Helminth infestation improved the rodents' metabolism. The authors concluded:
Although sparse in blood of persons in developed countries, eosinophils are often elevated in individuals in rural developing countries where intestinal parasitism is prevalent and metabolic syndrome rare. We speculate that eosinophils may have evolved to optimize metabolic homeostasis during chronic infections by ubiquitous intestinal parasites….
Helminths (), also commonly known as parasitic worms, are large multicellular organisms, which can generally be seen with the naked eye when they are mature. They are often referred to as intestinal worms even though not all helminths reside in the intestines. For example, schistosomes are not intestinal worms, but rather reside in blood vessels. The word helminth comes from Greek "hélmins", a kind of worm.
There is no consensus on the taxonomy of helminths. It is simply a commonly used term to describe certain worms with some similarities. These are flatworms (platyhelminthes), namely cestodes (tapeworms) and trematodes (flukes), and roundworms or nemathelminths (nematodes) – both of these are parasitic worm types – and the annelida, which are not parasitic or at the most ectoparasites like the leeches.
Helminths are worm-like organisms living in and feeding on living hosts. They receive nourishment and protection while disrupting their hosts' nutrient absorption. This can cause weakness and disease of the host. Those helminths that live inside the digestive tract are called intestinal parasites. They can live inside humans and other animals. In their adult form, helminths cannot multiply in humans. Helminths are able to survive in their mammalian hosts for many years due to their ability to manipulate the immune response by secreting immunomodulatory products. All helminths produce eggs (also called ova) for reproduction. These eggs have a strong shell that protects them against a range of environmental conditions. The eggs can therefore survive in the environment, outside their hosts, for many months or years.
Many, but not all, of the worms referred to as helminths belong to the group of intestinal parasites. An infection by a helminth is known as helminthiasis, helminth infection or intestinal worm infection. There is a naming convention which applies to all helminths: the ending "-asis" (or in veterinary science: "-osis") is added at the end of the name of the worm to denote the infection with that particular worm. For example, "Ascaris" is the name of a type of helminth, and ascariasis is the name of the infectious disease caused by that helminth.
Waterborne diseases are conditions caused by pathogenic micro-organisms that are transmitted in water. Disease can be spread while bathing, washing or drinking water, or by eating food exposed to infected water. Various forms of waterborne diarrheal disease are the most prominent examples, and affect children in developing countries most dramatically.
According to the World Health Organization, waterborne diseases account for an estimated 3.6% of the total DALY (disability- adjusted life year) global burden of disease, and cause about 1.5 million human deaths annually. The World Health Organization estimates that 58% of that burden, or 842,000 deaths per year, is attributable to a lack of safe drinking water supply, sanitation and hygiene (summarized as WASH).
The term waterborne disease is reserved largely for infections that predominantly are transmitted through contact with or consumption of infected water. Trivially, many infections may be transmitted by microbes or parasites that accidentally, possibly as a result of exceptional circumstances, have entered the water, but the fact that there might be an occasional freak infection need not mean that it is useful to categorise the resulting disease as "waterborne". Nor is it common practice to refer to diseases such as malaria as "waterborne" just because mosquitoes have aquatic phases in their life cycles, or because treating the water they inhabit happens to be an effective strategy in control of the mosquitoes that are the vectors.
Microorganisms causing diseases that characteristically are waterborne prominently include protozoa and bacteria, many of which are intestinal parasites, or invade the tissues or circulatory system through walls of the digestive tract. Various other waterborne diseases are caused by viruses. (In spite of philosophical difficulties associated with defining viruses as "organisms", it is practical and convenient to regard them as microorganisms in this connection.)
Yet other important classes of water-borne diseases are caused by metazoan parasites. Typical examples include certain Nematoda, that is to say "roundworms". As an example of water-borne Nematode infections, one important waterborne nematodal disease is Dracunculiasis. It is acquired by swallowing water in which certain copepoda occur that act as vectors for the Nematoda. Anyone swallowing a copepod that happens to be infected with Nematode larvae in the genus Dracunculus, becomes liable to infection. The larvae cause guinea worm disease.
Another class of waterborne metazoan pathogens are certain members of the Schistosomatidae, a family of blood flukes. They usually infect victims that make skin contact with the water. Blood flukes are pathogens that cause Schistosomiasis of various forms, more or less seriously affecting hundreds of millions of people worldwide.
Long before modern studies had established the germ theory of disease, or any advanced understanding of the nature of water as a vehicle for transmitting disease, traditional beliefs had cautioned against the consumption of water, rather favouring processed beverages such as beer, wine and tea. For example, in the camel caravans that crossed Central Asia along the Silk Road, the explorer Owen Lattimore noted, "The reason we drank so much tea was because of the bad water. Water alone, unboiled, is never drunk. There is a superstition that it causes blisters on the feet."
Tropical diseases are diseases that are prevalent in or unique to tropical and subtropical regions. The diseases are less prevalent in temperate climates, due in part to the occurrence of a cold season, which controls the insect population by forcing hibernation. However, many were present in northern Europe and northern America in the 17th and 18th centuries before modern understanding of disease causation. The initial impetus for tropical medicine was to protect the health of colonialists, notably in India under the British Raj. Insects such as mosquitoes and flies are by far the most common disease carrier, or vector. These insects may carry a parasite, bacterium or virus that is infectious to humans and animals. Most often disease is transmitted by an insect "bite", which causes transmission of the infectious agent through subcutaneous blood exchange. Vaccines are not available for most of the diseases listed here, and many do not have cures.
Human exploration of tropical rainforests, deforestation, rising immigration and increased international air travel and other tourism to tropical regions has led to an increased incidence of such diseases.