Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Antibiotic treatment only has a marginal effect on the duration of symptoms, and its use is not recommended except in high-risk patients with clinical complications.
Erythromycin can be used in children, and tetracycline in adults. Some studies show, however, that erythromycin rapidly eliminates "Campylobacter" from the stool without affecting the duration of illness. Nevertheless, children with dysentery due to "C. jejuni" benefit from early treatment with erythromycin. Treatment with antibiotics, therefore, depends on the severity of symptoms. Quinolones are effective if the organism is sensitive, but high rates of quinolone use in livestock means that quinolones are now largely ineffective.
Antimotility agents, such as loperamide, can lead to prolonged illness or intestinal perforation in any invasive diarrhea, and should be avoided. Trimethoprim/sulfamethoxazole and ampicillin are ineffective against "Campylobacter".
The infection is usually self-limiting, and in most cases, symptomatic treatment by liquid and electrolyte replacement is enough in human infections.
Mild cases usually do not require treatment and will go away after a few days in healthy people. In cases where symptoms persist or when it is more severe, specific treatments based on the initial cause may be required.
In cases where diarrhoea is present, replenishing fluids lost is recommended, and in cases with prolonged or severe diarrhoea which persists, intravenous rehydration therapy or antibiotics may be required. A simple oral rehydration therapy (ORS) can be made by dissolving one teaspoon of salt, eight teaspoons of sugar and the juice of an orange into one litre of clean water. Studies have shown the efficacy of antibiotics in reducing the duration of the symptoms of infectious enteritis of bacterial origin, however antibiotic treatments are usually not required due to the self-limiting duration of infectious enteritis.
Bacterial overgrowth is usually treated with a course of antibiotics although whether antibiotics should be a first line treatment is a matter of debate. Some experts recommend probiotics as first line therapy with antibiotics being reserved as a second line treatment for more severe cases of SIBO. Prokinetic drugs are other options but research in humans is limited. A variety of antibiotics, including tetracycline, amoxicillin-clavulanate, fluoroquinolones, metronidazole, neomycin, cephalexin, trimethoprim-sulfamethoxazole, and nitazoxanide have been used; however, the best evidence is for the use of rifaximin.
A course of one week of antibiotics is usually sufficient to treat the condition. However, if the condition recurs, antibiotics can be given in a cyclical fashion in order to prevent tolerance. For example, antibiotics may be given for a week, followed by three weeks off antibiotics, followed by another week of treatment. Alternatively, the choice of antibiotic used can be cycled.
The condition that predisposed the patient to bacterial overgrowth should also be treated. For example, if the bacterial overgrowth is caused by chronic pancreatitis, the patient should be treated with coated pancreatic enzyme supplements.
Probiotics are bacterial preparations that alter the bacterial flora in the bowel to cause a beneficial effect. Animal research has demonstrated that probiotics have barrier enhancing, antibacterial, immune modulating and anti-inflammatory effects which may have a positive effect in the management of SIBO in humans. "Lactobacillus casei" has been found to be effective in improving breath hydrogen scores after 6 weeks of treatment presumably by suppressing levels of a small intestinal bacterial overgrowth of fermenting bacteria. The multi-strain preparation VSL#3 was found to be effective in suppressing SIBO. "Lactobacillus plantarum", "Lactobacillus acidophilus", and "Lactobacillus casei" have all demonstrated effectiveness in the treatment and management of SIBO. Conversely, "Lactobacillus fermentum" and "Saccharomyces boulardii" have been found to be ineffective. A combination of "Lactobacillus plantarum" and "Lactobacillus rhamnosus" has been found to be effective in suppressing bacterial overgrowth of abnormal gas producing organisms in the small intestine.
Probiotics are superior to antibiotics in the treatment of SIBO. A combination of probiotic strains has been found to produce better results than therapy with the antibiotic drug metronidazole and probiotics have been found to be effective in treating and preventing secondary lactase deficiency and small intestinal bacteria overgrowth in individuals suffering from post-infectious irritable bowel syndrome. Probiotics taken in uncomplicated cases of SIBO can usually result in the individual becoming symptom free. Probiotic therapy may need to be taken continuously to prevent the return of overgrowth of gas producing bacteria. A study by the probiotic yogurt producer Nestlé found that probiotic yogurt may also be effective in treating SIBO with evidence of reduced inflammation after 4 weeks of treatment.
An elemental diet taken for two weeks is an alternative to antibiotics for eliminating SIBO. An elemental diet works via providing nutrition for the individual while depriving the bacteria of a food source. Additional treatment options include the use of prokinetic drugs such as 5-HT4 receptor agonists or motilin agonists to extend the SIBO free period after treatment with an elemental diet or antibiotics. A diet void of certain foods that feed the bacteria can help alleviate the symptoms. For example, if the symptoms are caused by bacterial overgrowth feeding on indigestible carbohydrate rich foods, following a FODMAP restriction diet may help.
Treatment for colitis-X usually does not save the horse. The prognosis is average to poor, and mortality is 90% to 100%. However, treatments are available, and one famous horse that survived colitis-X was U.S. Triple Crown winner Seattle Slew, that survived colitis-X in 1978 and went on to race as a four-year-old.
Large amounts of intravenous fluids are needed to counter the severe dehydration, and electrolyte replacement is often necessary. Flunixin meglumine (Banamine) may help block the effects of toxemia. Mortality rate has been theorized to fall to 75% if treatment is prompt and aggressive, including administration of not only fluids and electrolytes, but also blood plasma, anti-inflammatory and analgesic drugs, and antibiotics. Preventing dehydration is extremely important. Nutrition is also important. Either parenteral or normal feeding can be used to support the stressed metabolism of the sick horse. Finally, the use of probiotics is considered beneficial in the restoration of the normal intestinal flora. The probiotics most often used for this purpose contain "Lactobacillus" and "Bifidobacterium".
Dysentery is managed by maintaining fluids by using oral rehydration therapy. If this treatment cannot be adequately maintained due to vomiting or the profuseness of diarrhea, hospital admission may be required for intravenous fluid replacement. In ideal situations, no antimicrobial therapy should be administered until microbiological microscopy and culture studies have established the specific infection involved. When laboratory services are not available, it may be necessary to administer a combination of drugs, including an amoebicidal drug to kill the parasite, and an antibiotic to treat any associated bacterial infection.
If shigellosis is suspected and it is not too severe, letting it run its course may be reasonable — usually less than a week. If the case is severe, antibiotics such as ciprofloxacin or TMP-SMX may be useful. However, many strains of "Shigella" are becoming resistant to common antibiotics, and effective medications are often in short supply in developing countries. If necessary, a doctor may have to reserve antibiotics for those at highest risk for death, including young children, people over 50, and anyone suffering from dehydration or malnutrition.
Amoebic dysentery is often treated with two antimicrobial drug such as metronidazole and paromomycin or iodoquinol.
WAD is typically self-limited, generally resolving without specific treatment. Oral rehydration therapy with rehydration salts is often beneficial to replace lost fluids and electrolytes. Clear, disinfected water or other liquids are routinely recommended.
Hikers who develop three or more loose stools in a 24-hour period – especially if associated with nausea, vomiting, abdominal cramps, fever, or blood in stools – should be treated by a doctor and may benefit from antibiotics, usually given for 3–5 days. Alternatively, a single dose azithromycin or levofloxacin may be prescribed. If diarrhea persists despite therapy, travelers should be evaluated and treated for possible parasitic infection.
"Cryptosporidium" can be quite dangerous to patients with compromised immune systems. Alinia (nitazoxanide) is approved by the FDA for treatment of "Cryptosporidium".
With correct treatment, most cases of amoebic and bacterial dysentery subside within 10 days, and most individuals achieve a full recovery within two to four weeks after beginning proper treatment. If the disease is left untreated, the prognosis varies with the immune status of the individual patient and the severity of disease. Extreme dehydration can delay recovery and significantly raises the risk for serious complications.
Treatment is not always necessary as the infection usually resolves on its own. However, if the illness is acute or symptoms persist and medications are needed to treat it, a nitroimidazole medication is used such as metronidazole, tinidazole, secnidazole or ornidazole.
The World Health Organization and Infectious Disease Society of America recommend metronidazole as first line therapy. The US CDC lists metronidazole, tinidazole, and nitazoxanide as effective first-line therapies; of these three, only nitazoxanide and tinidazole are approved for the treatment of giardiasis by the US FDA. A meta-analysis done by the Cochrane Collaboration found that compared to the standard of metronidazole, albendazole had equivalent efficacy while having fewer side effects, such as gastrointestinal or neurologic issues. Other meta-analyses have reached similar conclusions. Both medications need a five to 10 day long course; albendazole is taken once a day, while metronidazole needs to be taken three times a day. The evidence for comparing metronidazole to other alternatives such as mebendazole, tinidazole or nitazoxanide was felt to be of very low quality. While tinidazole has side effects and efficacy similar to those of metronidazole, it is administered with a single dose.
Resistance has been seen clinically to both nitroimidazoles and albendazole, but not nitazoxanide, though nitazoxanide resistance has been induced in research laboratories so is theoretically possible. The exact mechanism of resistance to all of these medications is not well understood. In the case of nitroimidazole-resistant strains of Giardia, other drugs are available which have showed efficacy in treatment including quinacrine, nitazoxanide, bacitracin zinc, furazolidone and paromomycin.
During pregnancy, paromomycin is the preferred treatment drug because of its poor intestinal absorption, and thus less exposure to the fetus. Alternatively, metronidazole can be used after the first trimester as there has been wide experience in its use for trichomonas in pregnancy.
Significant disease develops in fewer than 5% of those infected and typically occurs in those with a weakened immune system. Mild asymptomatic cases often do not require any treatment, and the symptoms will go away within a few months. Those with severe symptoms may benefit from anti-fungal therapy, which usually requires 3–6 months of treatment. There is a lack of prospective studies that examine optimal anti-fungal therapy for coccidioidomycosis.
On the whole, oral fluconazole and intravenous amphotericin B are used in progressive or disseminated disease, or in immunocompromised individuals. Amphotericin B used to be the only available treatment, although now there are alternatives, including itraconazole or ketoconazole may be used for milder disease. Fluconazole is the preferred medication for coccidioidal meningitis, due to its penetration into CSF. Intrathecal or intraventricular amphotericin B therapy is used if infection persists after fluconazole treatment. Itraconazole is used for cases that involve treatment of infected person's bones and joints. The antifungal medications posaconazole and voriconazole have also been used to treat coccidioidomycosis. Because the symptoms of valley fever are similar to the common flu and other respiratory diseases, it is important for public health professionals to be aware of the rise of valley fever and the specifics of diagnosis. Greyhound dogs often get valley fever as well, and their treatment regimen involves 6–12 months of Ketoconazole, to be taken with food.
Conventional "amphotericin B desoxycholate" (AmB: used since the 1950s as a primary agent) is known to be associated with increased drug-induced Nephrotoxicity (Renal toxicity) impairing Renal function. Other formulations have been developed such as lipid soluble formulations to mitigate such side-effects as direct proximal and distal tubular cytotoxicity. These include liposomal amphotericin B, "amphotericin B lipid complex" such as Abelcet (brand) "amphotericin B phospholipid complex" also as "AmBisome Intravenous", or "Amphotec Intravenous" (Generic; Amphotericin B Cholesteryl Sul) and, "amphotericin B colloidal dispersion", all shown to exhibit a decrease in nephrotoxicity. The later was not as effective in one study as "amphotericin B desoxycholate" which had a 50% murine morbidity rate versus zero for the AmB colloidal dispersion.
The cost of AmB deoxycholate in 2015, for a patient of at 1 mg/kg/day dosage, was approximately $63.80, compared to 5 mg/kg/day of liposomal AmB at $1318.80. This may be a concern in resource-limited settings.
Recovery from an anaerobic infection depends on adequate and rapid management. The main principles of managing anaerobic infections are neutralizing the toxins produced by anaerobic bacteria, preventing the local proliferation of these organisms by altering the environment and preventing their dissemination and spread to healthy tissues.
Toxin can be neutralized by specific antitoxins, mainly in infections caused by Clostridia (tetanus and botulism). Controlling the environment can be attained by draining the pus, surgical debriding of necrotic tissue, improving blood circulation, alleviating any obstruction and by improving tissue oxygenation. Therapy with hyperbaric oxygen (HBO) may also be useful. The main goal of antimicrobials is in restricting the local and systemic spread of the microorganisms.
The available parenteral antimicrobials for most infections are metronidazole, clindamycin, chloramphenicol, cefoxitin, a penicillin (i.e. ticarcillin, ampicillin, piperacillin) and a beta-lactamase inhibitor (i.e. clavulanic acid, sulbactam, tazobactam), and a carbapenem (imipenem, meropenem, doripenem, ertapenem). An antimicrobial effective against Gram-negative enteric bacilli (i.e. aminoglycoside) or an anti-pseudomonal cephalosporin (i.e. cefepime ) are generally added to metronidazole, and occasionally cefoxitin when treating intra-abdominal infections to provide coverage for these organisms. Clindamycin should not be used as a single agent as empiric therapy for abdominal infections. Penicillin can be added to metronidazole in treating of intracranial, pulmonary and dental infections to provide coverage against microaerophilic streptococci, and Actinomyces.
Oral agents adequate for polymicrobial oral infections include the combinations of amoxicillin plus clavulanate, clindamycin and metronidazole plus a macrolide. Penicillin can be added to metronidazole in the treating dental and intracranial infections to cover "Actinomyces" spp., microaerophilic streptococci, and "Arachnia" spp. A macrolide can be added to metronidazole in treating upper respiratory infections to cover "S. aureus" and aerobic streptococci. Penicillin can be added to clindamycin to supplement its coverage against "Peptostreptococcus" spp. and other Gram-positive anaerobic organisms.
Doxycycline is added to most regimens in the treatment of pelvic infections to cover chlamydia and mycoplasma. Penicillin is effective for bacteremia caused by non-beta lactamase producing bacteria. However, other agents should be used for the therapy of bacteremia caused by beta-lactamase producing bacteria.
Because the length of therapy for anaerobic infections is generally longer than for infections due to aerobic and facultative anaerobic bacteria, oral therapy is often substituted for parenteral treatment. The agents available for oral therapy are limited and include amoxacillin plus clavulanate, clindamycin, chloramphenicol and metronidazole.
In 2010 the American Surgical Society and American Society of Infectious Diseases have updated their guidelines for the treatment of abdominal infections.
The recommendations suggest the following:
For mild-to-moderate community-acquired infections in adults, the agents recommended for empiric regimens are: ticarcillin- clavulanate, cefoxitin, ertapenem, moxifloxacin, or tigecycline as single-agent therapy or combinations of metronidazole with cefazolin, cefuroxime, ceftriaxone, cefotaxime, levofloxacin, or ciprofloxacin. Agents no longer recommended are: cefotetan and clindamycin ( Bacteroides fragilis group resistance) and ampicillin-sulbactam (E. coli resistance) and ainoglycosides (toxicity).
For high risk community-acquired infections in adults, the agents recommended for empiric regimens are: meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, ciprofloxacin or levofloxacin in combination with metronidazole, or ceftazidime or cefepime in combination with metronidazole. Quinolones should not be used unless hospital surveys indicate >90% susceptibility of "E. coli" to quinolones.
Aztreonam plus metronidazole is an alternative, but addition of an agent effective against gram-positive cocci is recommended. The routine use of an aminoglycoside or another second agent effective against gram-negative facultative and aerobic bacilli is not recommended in the absence of evidence that the infection is caused by resistant organisms that require such therapy.
Empiric use of agents effective against enterococci is recommended and agents effective against methicillin-resistant "S. aureus" (MRSA) or yeast is not recommended in the absence of evidence of infection due to such organisms.
Empiric antibiotic therapy for health care-associated intra-abdominal should be driven by local microbiologic results. Empiric coverage of likely pathogens may require multidrug regimens that include agents with expanded spectra of activity against gram-negative aerobic and facultative bacilli. These include meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, or ceftazidime or cefepime in combination with metronidazole. Aminoglycosides or colistin may be required.
Antimicrobial regimens for children include an aminoglycoside-based regimen, a carbapenem (imipenem, meropenem, or ertapenem), a beta-lactam/beta-lactamase-inhibitor combination (piperacillin-tazobactam or ticarcillin-clavulanate), or an advanced-generation cephalosporin (cefotaxime, ceftriaxone, ceftazidime, or cefepime) with metronidazole.
Clinical judgment, personal experience, safety and patient compliance should direct the physician in the choice of the appropriate antimicrobial agents. The length of therapy generally ranges between 2 and 4 weeks, but should be individualized depending on the response. In some instances treatment may be required for as long as 6–8 weeks, but can often be shortened with proper surgical drainage.
Since wilderness acquired diarrhea can be caused by insufficient hygiene, contaminated water, and (possibly) increased susceptibility from vitamin deficiency, prevention methods should address these causes.
Medical treatment of IBD is individualised to each patient. The choice of which drugs to use and by which route to administer them (oral, rectal, injection, infusion) depends on factors including the type, distribution, and severity of the patient's disease, as well as other historical and biochemical prognostic factors, and patient preferences. For example, mesalazine is more useful in ulcerative colitis than in Crohn's disease. Generally, depending on the level of severity, IBD may require immunosuppression to control the symptoms, with drugs such as prednisone, TNF inhibitors, azathioprine (Imuran), methotrexate, or 6-mercaptopurine.
Steroids, such as the glucocorticoid prednisone, are frequently used to control disease flares and were once acceptable as a maintenance drug. Biological therapy for inflammatory bowel disease, especially the TNF inhibitors, are used in people with more severe or resistant Crohn's disease and sometimes in ulcerative colitis.
Treatment is usually started by administering drugs with high anti-inflammatory effects, such as prednisone. Once the inflammation is successfully controlled, another drug to keep the disease in remission, such as mesalazine in UC, is the main treatment. If further treatment is required, a combination of an immunosuppressive drug (such as azathioprine) with mesalazine (which may also have an anti-inflammatory effect) may be needed, depending on the patient. Controlled release Budesonide is used for mild ileal Crohn's disease.
Stem cell therapy is undergoing research as a possible treatment for IBD. A review of studies suggests a promising role, although there are substantial challenges, including cost and characterization of effects, which limit the current use in clinical practice.
Treatment is with penicillin, ampicillin, tetracycline, or co-trimoxazole for one to two years. Any treatment lasting less than a year has an approximate relapse rate of 40%. Recent expert opinion is that Whipple's disease should be treated with doxycycline with hydroxychloroquine for 12 to 18 months. Sulfonamides (sulfadiazine or sulfamethoxazole) may be added for treatment of neurological symptoms.
In order to control for the disease, the "Lymnaea" spp snails, which are the intermediate host for the liver flukes, need to be controlled. There are three ways that have proven most effective when controlling the snail populations:
- The first is by treating pastures and water channels with copper sulfate. This method is not always practical, because it is too expensive to treat in large areas. Lack of cooperation between neighbors is also a problem, snails are easily transported, and treated pastures become re-infested by neighboring fields and streams.
- Drenching the sheep with carbon tetra-chloride in paraffin oil has proven to be an alternative. However, drenching in more than recommended doses can be fatal, by causing liver damage, which could initiate the disease in sheep carrying "B. oedematiens" spores.
- Drainage is an effective option to eliminate the snails. However, draining the places where the grass grows eliminates a source of food for the sheep and creates other unwanted problems.
Treatment of AIT involves antibiotic treatment. Based on the offending organism found on microscopic examination of the stained fine needle aspirate, the appropriate antibiotic treatment is determined. In the case of a severe infection, systemic antibiotics are necessary. Empirical broad spectrum antimicrobial treatment provides preliminary coverage for a variety of bacteria, including "S. aureus" and "S. pyogenes." Antimicrobial options include penicillinase-resistant penicillins (ex: cloxacillin, dicloxacillin) or a combination of a penicillin and a beta-lactamase inhibitor. However, in patients with a penicillin allergy, clindamycin or a macrolide can be prescribed. The majority of anaerobic organisms involved with AIT are susceptible to penicillin. Certain Gram-negative bacilli (ex: "Prevotella", "Fusobacteria", and "Porphyromonas") are exhibiting an increased resistance based on the production of beta-lactamase. Patients who have undergone recent penicillin therapy have demonstrated an increase in beta-lactamase-producing (anaerobic and aerobic) bacteria. Clindamycin, or a combination of metronidazole and a macrolide, or a penicillin combined with a beta-lactamase inhibitor is recommended in these cases. Fungal thyroiditis can be treated with amphotericin B and fluconazole. Early treatment of AIT prevents further complications. However, if antibiotic treatment does not manage the infection, surgical drainage is required. Symptoms or indications requiring drainage include continued fever, high white blood cell count, and continuing signs of localized inflammation. The draining procedure is also based on clinical examination or ultrasound/CT scan results that indicate an abscess or gas formation. Another treatment of AIT involves surgically removing the fistula. This treatment is often the option recommended for children. However, in cases of an antibiotic resistant infection or necrotic tissue, a lobectomy is recommended. If diagnosis and/or treatment is delayed, the disease could prove fatal.
"S. pneumonia" can be treated with a combination of penicillin and ampicillin.
Once diagnosed, tropical sprue can be treated by a course of the antibiotic tetracycline or sulphamethoxazole/trimethoprim (co-trimoxazole) for 3 to 6 months.
Supplementation of vitamins B and folic acid improves appetite and leads to a gain in weight.
For suspected Gram-negative enteric(including "E. coli") meningitis a combination of cefotaxime and aminoglycoside, usually gentamicin, is recommended. This treatment should last for 14 days after sterilization and then only cefotaxime for another 7 days creating a minimum of 21 days of therapy post-sterilization.
Treatment of infections caused by "Bartonella" species include:
Some authorities recommend the use of azithromycin.
Preventive measures for visitors to tropical areas where the condition exists include steps to reduce the likelihood of gastroenteritis. These may comprise using only bottled water for drinking, brushing teeth, and washing food, and avoiding fruits washed with tap water (or consuming only peeled fruits, such as bananas and oranges). Basic sanitation is necessary to reduce fecal-oral contamination and the impact of environmental enteropathy in the developing world.
The most common medications used to treat coccidian infections are in the sulfonamide antibiotic family.
Depending on the pathogen and the condition of the animal, untreated coccidiosis may clear of its own accord, or become severe and damaging, and sometimes cause death.
The CDC recommends hand-washing and avoiding potentially contaminated food and untreated water.
Boiling suspect water for one minute is the surest method to make water safe to drink and kill disease-causing microorganisms such as "Giardia lamblia" if in doubt about whether water is infected. Chemical disinfectants or filters may be used.
According to a review of the literature from 2000, there is little evidence linking the drinking of water in the North American wilderness and Giardia. CDC surveillance data (for 2005 and 2006) reports one outbreak (6 cases) of waterborne giardiasis contracted from drinking wilderness river water in Colorado. However, less than 1% of reported giardiasis cases are associated with outbreaks.
Person-to-person transmission accounts for the majority of "Giardia" infections and is usually associated with poor hygiene and sanitation. "Giardia" is found on the surface of the ground, in the soil, in undercooked foods, and in water, and on hands without proper cleaning after handling infected feces. Water-borne transmission is associated with the ingestion of contaminated water. In the U.S., outbreaks typically occur in small water systems using inadequately treated surface water. Venereal transmission happens through fecal-oral contamination. Additionally, diaper changing and inadequate hand washing are risk factors for transmission from infected children. Lastly, food-borne epidemics of "Giardia" have developed through the contamination of food by infected food-handlers.