Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The treatment of mesenteric ischemia depends on the cause, and can be medical or surgical. However, if bowel has become necrotic, the only treatment is surgical removal of the dead segments of bowel.
In non-occlusive mesenteric ischemia, where there is no blockage of the arteries supplying the bowel, the treatment is medical rather than surgical. People are admitted to the hospital for resuscitation with intravenous fluids, careful monitoring of laboratory tests, and optimization of their cardiovascular function. NG tube decompression and heparin anticoagulation may also be used to limit stress on the bowel and optimize perfusion, respectively.
Surgical revascularisation remains the treatment of choice for mesenteric ischaemia related to an occlusion of the vessels supplying the bowel, but thrombolytic medical treatment and vascular interventional radiological techniques have a growing role.
If the ischemia has progressed to the point that the affected intestinal segments are gangrenous, a bowel resection of those segments is called for. Often, obviously dead segments are removed at the first operation, and a second-look operation is planned to assess segments that are borderline that may be savable after revascularization.
Except in the most severe cases, ischemic colitis is treated with supportive care. IV fluids are given to treat dehydration, and the patient is placed on bowel rest (meaning nothing to eat or drink) until the symptoms resolve. If possible, cardiac function and oxygenation should be optimized to improve oxygen delivery to the ischemic bowel. A nasogastric tube may be inserted if an ileus is present.
Antibiotics are sometimes given in moderate to severe cases; the data supporting this practice date to the 1950s, although there is more recent animal data suggesting that antibiotics may increase survival and prevent bacteria from crossing the damaged lining of the colon into the bloodstream. The use of prophylactic antibiotics in ischemic colitis has not been prospectively evaluated in humans, but many authorities recommend their use based on the animal data.
Patients being treated supportively are carefully monitored. If they develop worsening symptoms and signs such as high white blood cell count, fever, worsened abdominal pain, or increased bleeding, then they may require surgical intervention; this usually consists of laparotomy and bowel resection.
The prognosis depends on prompt diagnosis (less than 12–24 hours and before gangrene) and the underlying cause:
- venous thrombosis: 32% mortality
- arterial embolism: 54% mortality
- arterial thrombosis: 77% mortality
- non-occlusive ischemia: 73% mortality.
In the case of prompt diagnosis and therapy, acute mesenteric ischemia can be reversible.
Splenic infarction can be induced for the treatment of such conditions as portal hypertension or splenic injury. It can also be used prior to splenectomy for the prevention of blood loss.
Treatment is varied depending upon the nature of the case. In severe cases, coronary artery bypass surgery is performed to redirect blood flow around the affected area. Drug-eluting stents and thrombolytic drug therapy are less invasive options for less severe cases.
In last decade, similar to myocardial infarction treatment, thrombolytic drugs were introduced in the therapy of cerebral infarction. The use of intravenous rtPA therapy can be advocated in patients who arrive to stroke unit and can be fully evaluated within 3 h of the onset.
If cerebral infarction is caused by a thrombus occluding blood flow to an artery supplying the brain, definitive therapy is aimed at removing the blockage by breaking the clot down (thrombolysis), or by removing it mechanically (thrombectomy). The more rapidly blood flow is restored to the brain, the fewer brain cells die. In increasing numbers of primary stroke centers, pharmacologic thrombolysis with the drug tissue plasminogen activator (tPA), is used to dissolve the clot and unblock the artery.
Another intervention for acute cerebral ischaemia is removal of the offending thrombus directly. This is accomplished by inserting a catheter into the femoral artery, directing it into the cerebral circulation, and deploying a corkscrew-like device to ensnare the clot, which is then withdrawn from the body. Mechanical embolectomy devices have been demonstrated effective at restoring blood flow in patients who were unable to receive thrombolytic drugs or for whom the drugs were ineffective, though no differences have been found between newer and older versions of the devices. The devices have only been tested on patients treated with mechanical clot embolectomy within eight hours of the onset of symptoms.
Angioplasty and stenting have begun to be looked at as possible viable options in treatment of acute cerebral ischaemia. In a systematic review of six uncontrolled, single-center trials, involving a total of 300 patients, of intra-cranial stenting in symptomatic intracranial arterial stenosis, the rate of technical success (reduction to stenosis of <50%) ranged from 90-98%, and the rate of major peri-procedural complications ranged from 4-10%. The rates of restenosis and/or stroke following the treatment were also favorable. This data suggests that a large, randomized controlled trial is needed to more completely evaluate the possible therapeutic advantage of this treatment.
If studies show carotid stenosis, and the patient has residual function in the affected side, carotid endarterectomy (surgical removal of the stenosis) may decrease the risk of recurrence if performed rapidly after cerebral infarction. Carotid endarterectomy is also indicated to decrease the risk of cerebral infarction for symptomatic carotid stenosis (>70 to 80% reduction in diameter).
In tissue losses that are not immediately fatal, the best course of action is to make every effort to restore impairments through physical therapy, cognitive therapy, occupational therapy, speech therapy and exercise.
The goal of treatment is to prevent the development or continuation of neurologic deficits. Treatments include observation, anticoagulation, stent implantation and carotid artery ligation.
Treatment is aimed at controlling symptoms and improving the interrupted blood flow to the affected area of the body.
Medications include:
- Antithrombotic medication. These are commonly given because thromboembolism is the major cause of arterial embolism. Examples are:
- Anticoagulants (such as warfarin or heparin) and antiplatelet medication (such as aspirin, ticlopidine, and clopidogrel) can prevent new clots from forming
- Thrombolytics (such as streptokinase) can dissolve clots
- Painkillers given intravenously
- Vasodilators to relax and dilate blood vessels.
Appropriate drug treatments successfully produces thrombolysis and removal of the clot in 50% to 80% of all cases.
Antithrombotic agents may be administered directly onto the clot in the vessel using a flexible catheter ("intra-arterial thrombolysis"). Intra-arterial thrombolysis reduces thromboembolic occlusion by 95% in 50% of cases, and restores adequate blood flow in 50% to 80% of cases.
Surgical procedures include:
- Arterial bypass surgery to create another source of blood supply
- Embolectomy, to remove the embolus, with various techniques available:
- Thromboaspiration
- Angioplasty with balloon catheterization with or without implanting a stent Balloon catheterization or open embolectomy surgery reduces mortality by nearly 50% and the need for limb amputation by approximately 35%.
- Embolectomy by open surgery on the artery
If extensive necrosis and gangrene has set in an arm or leg, the limb may have to be amputated. Limb amputation is in itself usually remarkably well tolerated, but is associated with a substantial mortality (~50%), primarily because of the severity of the diseases in patients where it is indicated.
Nitroglycerin can be used immediately to widen the coronary arteries and help increase blood flow to the heart. In addition, nitroglycerin causes peripheral venous and artery dilation reducing cardiac preload and afterload. These reductions allow for decreased stress on the heart and therefore lower the oxygen demand of the heart's muscle cells.
Antiplatelet drugs such as aspirin and clopidogrel can help reduce the progression of atherosclerotic plaque formation, as well as combining these with an anticoagulant such as a low molecular weight heparin.
Oxygen consumption of skeletal muscle is approximately 50 times larger while contracting than in the resting state. Thus, resting the affected limb should delay onset of infarction substantially after arterial occlusion.
Low molecular weight heparin is used to reduce or at least prevent enlargement of a thrombus, and is also indicated before any surgery. In the legs, below the inguinal ligament, percutaneous aspiration thrombectomy is a rapid and effective way of removing thromboembolic occlusions. Balloon thrombectomy using a Fogarty catheter may also be used. In the arms, balloon thrombectomy is an effective treatment for thromboemboli as well. However, local thrombi from atherosclerotic plaque are harder to treat than embolized ones. If results are not satisfying, another angiography should be performed.
Thrombolysis using analogs of tissue plasminogen activator (tPA) may be used as an alternative or complement to surgery. Where there is extensive vascular damage, bypass surgery of the vessels may be necessary to establish other ways to supply the affected parts.
Swelling of the limb may cause inhibited flow by increased pressure, and in the legs (but very rarely in the arms), this may indicate a fasciotomy, opening up all four leg compartments.
Because of the high recurrence rates of thromboembolism, it is necessary to administer anticoagulant therapy as well. Aspirin and low molecular weight heparin should be administered, and possibly warfarin as well. Follow-up includes checking peripheral pulses and the arm-leg blood pressure gradient.
How well a patient does depends on the location of the clot and to what extent the clot has blocked blood flow. Arterial embolism can be serious if not treated promptly.
Without treatment, it has a 25% to 30% mortality rate. The affected area can be permanently damaged, and up to approximately 25% of cases require amputation of an affected extremity.
Arterial emboli may recur even after successful treatment.
About 20% of patients with acute ischemic colitis may develop a long-term complication known as "chronic ischemic colitis". Symptoms can include recurrent infections, bloody diarrhea, weight loss, and chronic abdominal pain. Chronic ischemic colitis is often treated with surgical removal of the chronically diseased portion of the bowel.
A "colonic stricture" is a band of scar tissue which forms as a result of the ischemic injury and narrows the lumen of the colon. Strictures are often treated observantly; they may heal spontaneously over 12–24 months. If a bowel obstruction develops as a result of the stricture, surgical resection is the usual treatment, although endoscopic dilatation and stenting have also been employed.
The treatment for myocardial rupture is supportive in the immediate setting and surgical correction of the rupture, if feasible. A certain small percentage of individuals do not seek medical attention in the acute setting and survive to see the physician days or weeks later. In this setting, it may be reasonable to treat the rupture medically and delay or avoid surgery completely, depending on the individual's comorbid medical issues.
There are also surgical procedures for removal of a thrombus (thrombectomy).
After an AMI, people should be treated to prevent LVT formation. Aspirin plus an oral anticoagulant such as warfarin are suggested for individuals at risk for thromboembolic events. Anticoagulants are also shown to reduce the risk of embolisms when a thrombus is already formed. Heparin, an injectable, fast-acting anticoagulant, is effective in high doses for preventing LVT formation after AMI.
Restoring adequate blood flow to the heart muscle in people with heart failure and significant coronary artery disease is strongly associated with improved survival, some research showing up to 75% survival rates over 5 years. A stem cell study indicated that using autologous cardiac stem cells as a regenerative approach for the human heart (after a heart attack) has great potential.
American Heart Association practice guidelines indicate (ICD) implantable cardioverter-defibrillator use in those with ischemic cardiomyopathy (40 days post-MI) that are (NYHA) New York Heart Association functional class I. LVEF of >30% is often used to differentiate primary from ischemic cardiomyopathy, and a prognostic indicator. At the same time, people who undergo ventricular restoration on top of coronary artery bypass show improved postoperative ejection fraction as compared to those treated with only coronary artery bypass surgery. Severe cases are treated with heart transplantation.
Endotoxemia is a serious complication of colic and warrants aggressive treatment. Endotoxin (lipopolysaccharide) is released from the cell wall of gram-negative bacteria when they die. Normally, endotoxin is prevented from entering systemic circulation by the barrier function of the intestinal mucosa, antibodies and enzymes which bind and neutralize it and, for the small amount that manages to enter the blood stream, removal by Kupffer cells in the liver. Endotoxemia occurs when there is an overgrowth and secondary die-off of gram negative bacteria, releasing mass quantities of endotoxin. This is especially common when the mucosal barrier is damaged, as with ischemia of the GI tract secondary to a strangulating lesion or displacement. Endotoxemia produces systemic effects such as cardiovascular shock, insulin resistance, and coagulation abnormalities.
Fluid support is essential to maintain blood pressure, often with the help of colloids or hypertonic saline. NSAIDs are commonly given to reduce systemic inflammation. However, they decrease the levels of certain prostaglandins that normally promote healing of the intestinal mucosa, which subsequently increases the amount of endotoxin absorbed. To counteract this, NSAIDs are sometimes administered with a lidocaine drip, which appears to reduce this particular negative effect. Flunixin may be used for this purpose at a dose lower than that used for analgesia, so can be safely given to a colicky horse without risking masking signs that the horse requires surgery. Other drugs that bind endotoxin, such as polymyxin B and Bio-Sponge, are also often used. Polymixin B prevents endotoxin from binding to inflammatory cells, but is potentially nephrotoxic, so should be used with caution in horses with azotemia, especially neonatal foals. Plasma may also be given with the intent of neutralizing endotoxin.
Laminitis is a major concern in horses suffering from endotoxemia. Ideally, prophylactic treatment should be provided to endotoxic horses, which includes the use of NSAIDs, DMSO, icing of the feet, and frog support. Horses are also sometimes administered heparin, which is thought to reduce the risk of laminitis by decreasing blood coagulability and thus blood clot formation in the capillaries of the foot.
Dressler syndrome is best treated with high dose aspirin. In some resistant cases, corticosteroids can be used but are not preferred (avoided) in first month due to the high frequency of impaired ventricular healing leading to increased rate of ventricular rupture. NSAIDs though once used to treat Dressler syndrome, are less advocated and should be avoided in patients with ischemic heart disease. One NSAID in particular, indomethacin, can inhibit new collagen deposition thus impairing the healing process for the infarcted region. NSAIDS should only be used in cases refractory to aspirin. Heparin in Dressler syndrome should be avoided because it can lead to hemorrhage into the pericardial sac leading to tamponade. The only time heparin could be used with pericarditis is with coexisting acute MI in order to prevent further thrombus formation.
Secondary chronic intestinal pseudo-obstruction is managed by treating the underlying condition.
There is no cure for primary chronic intestinal pseudo-obstruction. It is important that nutrition and hydration is maintained, and pain relief is given. Drugs that increase the propulsive force of the intestines have been tried, as have different types of surgery.
In addition to fluid support, impactions are often treated with intestinal lubricants and laxatives to help move the obstruction along. Mineral oil is the most commonly used lubricant for large colon impactions, and is administered via nasogastric tube, up to 4 liters once or twice daily. It helps coat the intestine, but is not very effective for severe impactions or sand colic since it may simply bypass the obstruction. Mineral oil has the added benefit of crudely measuring GI transit time, a process which normally takes around 18 hours, since it is obvious when it is passed. The detergent dioctyl sodium sulfosuccinate (DDS) is also commonly given in oral fluids. It is more effective in softening an impaction than mineral oil, and helps stimulate intestinal motility, but can inhibit fluid absorption from the intestine and is potentially toxic so is only given in small amounts, two separate times 48 hours apart. Epsom salts are also useful for impactions, since they act both as an osmotic agent, to increase fluid in the GI tract, and as a laxative, but do run the risk of dehydration and diarrhea. Strong laxatives are not recommended for treating impactions.
Treatment includes supportive care with analgesics and anti-inflammatory agents. Exercise should be limited as it increases pain and extends the area of infarction. Symptoms usually resolve in weeks to months, but fifty percent of sufferers will experience relapse in either leg.
Prucalopride, pyridostigmine, metoclopramide, cisapride, and erythromycin may be used, but they have not been shown to have great efficacy. In such cases, treatment is aimed at managing the complications. Linaclotide is a new drug that received approval from Food and Drug Administration in August 2012 and looks promising in the treatment of chronic intestinal pseudo-obstruction, gastroparesis and inertia coli.
Intestinal stasis, which may lead to bacterial overgrowth and subsequently, diarrhea or malabsorption, is treated with antibiotics.
Nutritional deficiencies are treated by encouraging patients to avoid food high in fat and fibre, which are harder to digest and increase abdominal distention and discomfort, and have small, frequent meals (5–6 per day), focusing on liquids and soft food. Reducing intake of poorly absorbed sugar alcohols may be of benefit. Referral to an accredited dietitian is recommended. If dietary changes are unsuccessful in meeting nutritional requirements and stemming weight loss, enteral nutrition is used. Many patients eventually require parenteral nutrition.
Total parenteral nutrition (TPN) is a form of long-term nutritional treatment needed for patients that have severe pseudoobstruction. After a period of no improvement of intestinal function or motility the decision to start TPN will be made, and the surgical procedure to add a long-term, more permanent IV to administer TPN will occur. Types of IV catheters to be placed will be a PICC line or central line which include mediports, Broviac, or Hickman lines depending on how long the physicians believe the patient will require TPN. Patients that are deemed TPN dependent will require constant checkups to monitor the catheter is working properly, check liver enzyme levels and look for signs of blood infections, as catheter blockage, liver damage, and infections of catheters are the main complications associated with long term TPN use and can result in sepsis and/or additional surgeries if not properly monitored. TPN nutritional feeds are given over a period of several hours to all day infusions, and are a mixture of all the vitamins, minerals, and calories similar to what one would get eating orally daily as well as any other specific nutritional needs the patient has at the moment. TPN format is typically changed depending on loss/gain of weight and bloodwork results, and is specially formulated to meet each individual patient's needs.
Use of octreotide has been described.
Cannabis has long been known to limit or prevent nausea and vomiting from a variety of causes. This has led to extensive investigations that have revealed an important role for cannabinoids and their receptors in the regulation of nausea and emesis. With the discovery of the endocannabinoid system, novel ways to regulate both nausea and vomiting have been discovered that involve the production of endogenous cannabinoids acting centrally. The plant cannabis has been used in clinics for centuries, and has been known to be beneficial in a variety of gastrointestinal diseases, such as emesis, diarrhea, inflammatory bowel disease and intestinal pain. Moreover, modulation of the endogenous cannabinoid system in the gastrointestinal tract may provide a useful therapeutic target for gastrointestinal disorders. While some GI disorders may be controlled by diet and pharmaceutical medications, others are poorly moderated by conventional treatments. Symptoms of GI disorders often include cramping, abdominal pain, inflammation of the lining of the large and/or small intestine, chronic diarrhea, rectal bleeding and weight loss. Patients with these disorders frequently report using cannabis therapeutically.
In a 2012 animal study, cannabichromene was shown to normalize gastrointestinal hypermotility without reducing the transit time. The study notes that this result is of potential clinical interest, as the only drugs available for intestinal dysmotility are often associated with constipation.
One of the most important features differentiating ischemic cardiomyopathy from the other forms of cardiomyopathy is the shortened, or worsened all-cause mortality in patients with ischemic cardiomyopathy. According to several studies, coronary artery bypass graft surgery has a survival advantage over medical therapy (for ischemic cardiomyopathy) across varied follow-ups.
The incidence of myocardial rupture has decreased in the era of urgent revascularization and aggressive pharmacological therapy for the treatment of an acute myocardial infarction. However, the decrease in the incidence of myocardial rupture is not uniform; there is a slight increase in the incidence of rupture if thrombolytic agents are used to abort a myocardial infarction. On the other hand, if primary percutaneous coronary intervention is performed to abort the infarction, the incidence of rupture is significantly lowered. The incidence of myocardial rupture if PCI is performed in the setting of an acute myocardial infarction is about 1 percent.
After return of heart function, there has been a moderately higher risk of death in the hospital when compared to MI patients without PVF. Whether this still holds true with the recent changes in treatment strategies of earlier hospital admission and immediate angioplasty with thrombus removal is unknown. PVF does not affect the long-term prognosis.