Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment of Graves' disease includes antithyroid drugs which reduce the production of thyroid hormone; radioiodine (radioactive iodine I-131); and thyroidectomy (surgical excision of the gland). As operating on a frankly hyperthyroid patient is dangerous, prior to thyroidectomy, preoperative treatment with antithyroid drugs is given to render the patient "euthyroid" ("i.e." normothyroid). Each of these treatments has advantages and disadvantages. No one treatment approach is considered the best for everyone.
Treatment with antithyroid medications must be given for six months to two years to be effective. Even then, upon cessation of the drugs, the hyperthyroid state may recur. The risk of recurrence is about 40–50%, and lifelong treatment with antithyroid drugs carries some side effects such as agranulocytosis and liver disease. Side effects of the antithyroid medications include a potentially fatal reduction in the level of white blood cells. Therapy with radioiodine is the most common treatment in the United States, while antithyroid drugs and/or thyroidectomy are used more often in Europe, Japan, and most of the rest of the world.
β-Blockers (such as propranolol) may be used to inhibit the sympathetic nervous system symptoms of tachycardia and nausea until such time as antithyroid treatments start to take effect. Pure β-blockers do not inhibit lid-retraction in the eyes, which is mediated by alpha adrenergic receptors.
The main antithyroid drugs are carbimazole (in the UK), methimazole (in the US), and propylthiouracil/PTU. These drugs block the binding of iodine and coupling of iodotyrosines. The most dangerous side effect is agranulocytosis (1/250, more in PTU). Others include granulocytopenia (dose-dependent, which improves on cessation of the drug) and aplastic anemia. Patients on these medications should see a doctor if they develop sore throat or fever. The most common side effects are rash and peripheral neuritis. These drugs also cross the placenta and are secreted in breast milk. Lugol's iodine may be used to block hormone synthesis before surgery.
A randomized control trial testing single-dose treatment for Graves' found methimazole achieved euthyroid state more effectively after 12 weeks than did propylthyouracil (77.1% on methimazole 15 mg vs 19.4% in the propylthiouracil 150 mg groups).
No difference in outcome was shown for adding thyroxine to antithyroid medication and continuing thyroxine versus placebo after antithyroid medication withdrawal. However, two markers were found that can help predict the risk of recurrence. These two markers are a positive TSHr antibody (TSHR-Ab) and smoking. A positive TSHR-Ab at the end of antithyroid drug treatment increases the risk of recurrence to 90% (sensitivity 39%, specificity 98%), a negative TSHR-Ab at the end of antithyroid drug treatment is associated with a 78% chance of remaining in remission. Smoking was shown to have an impact independent to a positive TSHR-Ab.
Even though some patients undergo spontaneous remission of symptoms within a year, many need treatment. The first step is the regulation of thyroid hormone levels by a physician.
There is some published evidence that a total or sub-total thyroidectomy may assist in reducing levels of TSH receptor antibodies (TRAbs) and as a consequence reduce the eye symptoms, perhaps after a 12-month lag. However, a 2015 meta review found no such benefits, and there is some evidence that suggests that surgery is no better than medication; and there are risks associated with a Thyroidectomy, as there are with long-term use of anti-thyroid medication.
Topical lubrication of the ocular surface is used to avoid corneal damage caused by exposure. Tarsorrhaphy is an alternative option when the complications of ocular exposure can't be avoided solely with the drops.
Corticosteroids are efficient in reducing orbital inflammation, but the benefits cease after discontinuation. Corticosteroids treatment is also limited because of their many side effects. Radiotherapy is an alternative option to reduce acute orbital inflammation. However, there is still controversy surrounding its efficacy. A simple way of reducing inflammation is to stop smoking, as pro-inflammatory substances are found in cigarettes.
Surgery may be done to decompress the orbit, to improve the proptosis, and to address the strabismus causing diplopia. Surgery is performed once the patient's disease has been stable for at least six months. In severe cases, however, the surgery becomes urgent to prevent blindness from optic nerve compression. Because the eye socket is bone, there is nowhere for eye muscle swelling to be accommodated, and, as a result, the eye is pushed forward into a protruded position. In some patients, this is very pronounced. Orbital decompression involves removing some bone from the eye socket to open up one or more sinuses and so make space for the swollen tissue and allowing the eye to move back into normal position and also relieving compression of the optic nerve that can threaten sight.
Eyelid surgery is the most common surgery performed on Graves ophthalmopathy patients. Lid-lengthening surgeries can be done on upper and lower eyelid to correct the patient's appearance and the ocular surface exposure symptoms. Marginal myotomy of levator palpebrae muscle can reduce the palpebral fissure height by 2–3 mm. When there is a more severe upper lid retraction or exposure keratitis, marginal myotomy of levator palpebrae associated with lateral tarsal canthoplasty is recommended. This procedure can lower the upper eyelid by as much as 8 mm. Other approaches include müllerectomy (resection of the Müller muscle), eyelid spacer grafts, and recession of the lower eyelid retractors. Blepharoplasty can also be done to debulk the excess fat in the lower eyelid.
An article in the New England Journal of Medicine reports that treatment with selenium is effective in mild cases.
A large European study performed by the European Group On Graves' Orbitopathy (EUGOGO) has recently shown that the trace element selenium had a significant effect in patients with mild, active thyroid eye disease. Six months of selenium supplements had a beneficial effect on thyroid eye disease and were associated with improvement in the quality of life of participants. These positive effects persisted at 12 months. There were no side effects.
A summary of treatment recommendations was published in 2015 by an Italian taskforce, which largely supports the other studies.
Many of the common symptoms of hyperthyroidism such as palpitations, trembling, and anxiety are mediated by increases in beta-adrenergic receptors on cell surfaces. Beta blockers, typically used to treat high blood pressure, are a class of drugs that offset this effect, reducing rapid pulse associated with the sensation of palpitations, and decreasing tremor and anxiety. Thus, a patient suffering from hyperthyroidism can often obtain immediate temporary relief until the hyperthyroidism can be characterized with the Radioiodine test noted above and more permanent treatment take place. Note that these drugs do not treat hyperthyroidism or any of its long-term effects if left untreated, but, rather, they treat or reduce only symptoms of the condition.
Some minimal effect on thyroid hormone production however also comes with Propranolol - which has two roles in the treatment of hyperthyroidism, determined by the different isomers of propranolol. L-propranolol causes beta-blockade, thus treating the symptoms associated with hyperthyroidism such as tremor, palpitations, anxiety, and heat intolerance. D-propranolol inhibits thyroxine deiodinase, thereby blocking the conversion of T to T, providing some though minimal therapeutic effect. Other beta-blockers are used to treat only the symptoms associated with hyperthyroidism. Propranolol in the UK, and metoprolol in the US, are most frequently used to augment treatment for hyperthyroid patients.
In iodine-131 (radioiodine) radioisotope therapy, which was first pioneered by Dr. Saul Hertz, radioactive iodine-131 is given orally (either by pill or liquid) on a one-time basis, to severely restrict, or altogether destroy the function of a hyperactive thyroid gland. This isotope of radioactive iodine used for ablative treatment is more potent than diagnostic radioiodine (usually iodine-123 or a very low amount of iodine-131), which has a biological half-life from 8–13 hours. Iodine-131, which also emits beta particles that are far more damaging to tissues at short range, has a half-life of approximately 8 days. Patients not responding sufficiently to the first dose are sometimes given an additional radioiodine treatment, at a larger dose. Iodine-131 in this treatment is picked up by the active cells in the thyroid and destroys them, rendering the thyroid gland mostly or completely inactive.
Since iodine is picked up more readily (though not exclusively) by thyroid cells, and (more important) is picked up even more readily by over-active thyroid cells, the destruction is local, and there are no widespread side effects with this therapy. Radioiodine ablation has been used for over 50 years, and the only major reasons for not using it are pregnancy and breastfeeding (breast tissue also picks up and concentrates iodine). Once the thyroid function is reduced, replacement hormone therapy taken orally each day may easily provide the required amount of thyroid hormone the body needs. There is extensive experience, over many years, of the use of radioiodine in the treatment of thyroid overactivity and this experience does not indicate any increased risk of thyroid cancer following treatment. However, a study from 2007 has reported an increased cancer incidence after radioiodine treatment for hyperthyroidism.
The principal advantage of radioiodine treatment for hyperthyroidism is that it tends to have a much higher success rate than medications. Depending on the dose of radioiodine chosen, and the disease under treatment (Graves' vs. toxic goiter, vs. hot nodule etc.), the success rate in achieving definitive resolution of the hyperthyroidism may vary from 75-100%. A major expected side-effect of radioiodine in patients with Graves' disease is the development of lifelong hypothyroidism, requiring daily treatment with thyroid hormone. On occasion, some patients may require more than one radioactive treatment, depending on the type of disease present, the size of the thyroid, and the initial dose administered.
Graves' disease patients manifesting moderate or severe Graves' ophthalmopathy are cautioned against radioactive iodine-131 treatment, since it has been shown to exacerbate existing thyroid eye disease. Patients with mild or no ophthalmic symptoms can mitigate their risk with a concurrent six-week course of prednisone. The mechanisms proposed for this side effect involve a TSH receptor common to both thyrocytes and retro-orbital tissue.
As radioactive iodine treatment results in the destruction of thyroid tissue, there is often a transient period of several days to weeks when the symptoms of hyperthyroidism may actually worsen following radioactive iodine therapy. In general, this happens as a result of thyroid hormones being released into the blood following the radioactive iodine-mediated destruction of thyroid cells that contain thyroid hormone. In some patients, treatment with medications such as beta blockers (propranolol, atenolol, etc.) may be useful during this period of time.
Most patients do not experience any difficulty after the radioactive iodine treatment, usually given as a small pill. On occasion, neck tenderness or a sore throat may become apparent after a few days, if moderate inflammation in the thyroid develops and produces discomfort in the neck or throat area. This is usually transient, and not associated with a fever, etc.
Women breastfeeding should discontinue breastfeeding for at least a week, and likely longer, following radioactive iodine treatment, as small amounts of radioactive iodine may be found in breast milk even several weeks after the radioactive iodine treatment.
A common outcome following radioiodine is a swing from hyperthyroidism to the easily treatable hypothyroidism, which occurs in 78% of those treated for Graves' thyrotoxicosis and in 40% of those with toxic multinodular goiter or solitary toxic adenoma. Use of higher doses of radioiodine reduces the incidence of treatment failure, with penalty for higher response to treatment consisting mostly of higher rates of eventual hypothyroidism which requires hormone treatment for life.
There is increased sensitivity to radioiodine therapy in thyroids appearing on ultrasound scans as more uniform (hypoechogenic), due to densely packed large cells, with 81% later becoming hypothyroid, compared to just 37% in those with more normal scan appearances (normoechogenic).
Ideally a woman who is known to have hyperthyroidism should seek pre-pregnancy advice, although as yet there is no evidence for its benefit. Appropriate education should allay fears that are commonly present in these women. She should be referred for specialist care for frequent checking of her thyroid status, thyroid antibody evaluation and close monitoring of her medication needs. Medical therapy with anti-thyroid medications is the treatment of choice for hyperthyroidism in pregnancy.Methimazole and propylthiouracil (PTU) are effective in preventing pregnancy complications by hyperthyroidism. Surgery is considered for patients who suffer severe adverse reactions to anti-thyroid drugs and this is best performed in the second trimester of pregnancy. Radioactive iodine is absolutely contraindicated in pregnancy and the puerperium. If a woman is already receiving carbimazole, a change to propylthiouracil (PTU) is recommended but this should be changed back to carbimazole after the first trimester. This is because carbimazole can rarely be associated with skin and also mid line defects in the fetus but PTU long term also can cause liver side effects in the adult. Carbimazole and PTU are both secreted in breast milk but evidence suggests that antithyroid drugs are safe during lactation. There are no adverse effects on IQ or psychomotor development in children whose mothers have received antithyroid drugs in pregnancy.
Current guidelines suggest that a pregnant patient should be on PTU during the first trimester of pregnancy due to lower tetragenic effect and then be switched to methimazole during the second and third trimester due to lower liver dysfunction side effects.
Risk factors of progressive and severe thyroid-associated orbitopathy are:
- Age greater than 50 years
- Rapid onset of symptoms under 3 months
- Cigarette smoking
- Diabetes
- Severe or uncontrolled hyperthyroidism
- Presence of pretibial myxedema
- High cholesterol levels (hyperlipidemia)
- Peripheral vascular disease
Corticosteroids remain the main treatment modality for IOI. There is usually a dramatic response to this treatment and is often viewed as pathognomonic for this disease. Although response is usually quick, many agree that corticosteroids should be continued on a tapering basis to avoid breakthrough inflammation.
Although many respond to corticosteroid treatment alone, there are several cases in which adjuvant therapy is needed. While many alternatives are available, there is no particular well-established protocol to guide adjuvant therapy. Among the available options there is: surgery, alternative corticosteroid delivery, radiation therapy, non-steroidal anti-inflammatory drugs, cytotoxic agents (chlorambucil, cyclophosphamide), corticosteroid sparing immunosuppressants (methotrexate, cyclosporine, azathioprine), IV immune-globin, plasmapheresis, and biologic treatments (such as TNF-α inhibitors).
The prognosis tends to be good for patients with MG. It is often best not to treat mild cases of MG. Management necessitates avoidance of medications that can worsen neuromuscular transmission, such as aminoglycoside antibiotics, quinolone antibiotics, beta-blockers, chloroquine, anti-arrhythmics, calcium channel blockers, some anticonvulsants and intravenous iodinated contrast should be avoided.
MG is characteristically variable in course, with the frequency of diplopia and ptosis affected by environmental, emotional and physical factors such as bright sunlight, stress, viral illness, menstruation, pregnancy, etc. Spontaneous remission can occur in any patient and remain for years. In a study of the natural history of generalized MG among 168 patients (with an average follow-up of 12 years), 14% experienced complete remission.
Patients with mild-to-moderate ocular myasthenia are usually treated initially with oral anticholinesterase agents, Mestinon (pyridostigmine) being the most commonly employed. There have not been any randomized clinical trials conducted with these agents, and this treatment is often unsuccessful, particularly in resolving diplopia. Immunosuppressive therapy is then started and the agent of choice is usually prednisone. In a small controlled study this drug demonstrated greater efficacy than pyridostigmine. Steroid therapy is controversial, but in another study the results suggested that prednisone does decrease progression to generalized MG. There is no single recommended dosing regimen in light of the side effects commonly associated with chronic corticosteroid therapy, and the difficulty in weaning patients from steroids without exacerbation of symptoms. Response to prednisone therapy is variable.
Additionally, MG patients should be examined for thymomas, and if found, should undergo surgery to address this condition. A prophylactic thymectomy is controversial, but has been shown to be helpful in young MG patients with acute disease within 3 years of disease onset, in patients with enlarged thymus glands and for whom surgery is low-risk, and patients with generalized MG who are unresponsive to medical treatment.
The symptoms of ocular MG can also be addressed by non-medicinal means. Ptosis can be corrected with placement of crutches on eyeglasses and with ptosis tape to elevate eyelid droop. Diplopia can be addressed by occlusion with eye patching, frosted lens, occluding contact lens, or by simply placing opaque tape over a portion of eyeglasses. Also, plastic prisms (Fresnel prisms) can be attached to eyeglasses of a diplopic patient, allowing for alignment of vision from both eyes in the affected direction, but are often problematic if the degree of muscle weakness, and therefore ocular misalignment, fluctuates frequently.
Infiltrative ophthalmopathy is found in 5-10% of patients with Graves disease and resembles exophthalmos, except that the blurry or double vision is acquired because of weakness in the ocular muscles of the eye. In addition, there is no known correlation with the patient's thyroid levels. Exophthalmos associated with Grave's disease disappears when the thyrotoxicosis is corrected. Infiltrative ophthalmopathy at times may not be cured. Treatments consist of high dose glucocorticoids and low dose radiotherapy. The current hypothesis is that infiltrative ophthalmopathy may be autoimmune in nature targeting retrobulbar tissue. Smoking may also have a causative effect.
In the acute phase of an attack, administration of potassium will quickly restore muscle strength and prevent complications. However, caution is advised as the total amount of potassium in the body is not decreased, and it is possible for potassium levels to overshoot ("rebound hyperkalemia"); slow infusions of potassium chloride are therefore recommended while other treatment is commenced.
The effects of excess thyroid hormone typically respond to the administration of a non-selective beta blocker, such as propranolol (as most of the symptoms are driven by increased levels of adrenaline and its effect on the β-adrenergic receptors). Subsequent attacks may be prevented by avoiding known precipitants, such as high salt or carbohydrate intake, until the thyroid disease has been adequately treated.
Treatment of the thyroid disease usually leads to resolution of the paralytic attacks. Depending on the nature of the disease, the treatment may consist of thyrostatics (drugs that reduce production of thyroid hormone), radioiodine, or occasionally thyroid surgery.
Medications to treat hypothyroidism have been found to be safe during pregnancy. Levothyroxine is the treatment of choice for hypothyroidism in pregnancy. Thyroid function should be normalised prior to conception in women with pre-existing thyroid disease. Once pregnancy is confirmed the thyroxine dose should be increased by about 30-50% and subsequent titrations should be guided by thyroid function tests (FT4 and TSH) that should be monitored 4-6 weekly until euthyroidism is achieved. It is recommended that TSH levels are maintained below 2.5 mU/l in the first trimester of pregnancy and below 3 mU/l in later pregnancy. The recommended maintenance dose of thyroxine in pregnancy is about 2.0-2.4 µg/kg daily. Thyroxine requirements may increase in late gestation and return to pre-pregnancy levels in the majority of women on delivery. Pregnant patients with subclinical hypothyroidism (normal FT4 and elevated TSH) should be treated as well, since supplementation with levothyroxine in such cases results in significantly higher delivery rate, with a pooled relative chance of 2.76.
As reported by Dispenzieri "et al." Mayo Clinic treatment regimens are tailored to treat the clinical manifestations and prognosis for the rate of progression of the POEMS syndrome in each patient. In rare cases, patients may have minimal or no symptoms at presentation or after successful treatment of their disorder. These patients may be monitored every 2–3 months for symptoms and disease progression. Otherwise, treatment is divided based on the local versus systemic spread of its clonal plasma cells. Patients with one or two plasmacytoma bone lesions and no clonal plasma cells in their bone marrow biopsy specimens are treated by surgical removal or radiotherapy of their tumors. These treatments can relieve many of the syndromes clinical manifestations including neuropathies, have a 10-year overall survival of 70% and a 6-year progression-free survival of 62%. Patients with >2 plasmacytoma bone lesions and/or increases in bone marrow clonal plasma cells are treated with a low-dose or high-dose chemotherapy regimen, i.e. a corticosteroid such as dexamethasone plus an alkylating agents such as melphalan. Dosage regimens are selected on the basis of patient tolerance. Hematological response rates to the dexamethasone/melphalan regimens have been reported to be in the 80% range with neurological response rates approaching 100%. Patients successfully treated with the high-dose dexamethasone/melphalan regimen have been further treated with autologous stem cell transplantation. In 59 patients treated with the chemotherapy/transplantation regimen, the Mayo Clinic reported progression-free survival rates of 98%, 94%, and 75% at 1, 2, and 5 years, respectively.
Other treatment regiments are being studied. Immunomodulatory imide drugs such as thalidomide and lenalidomide have been used in combination with dexamethasone to treat POEMS syndrome patients. While the mechanism of action fo these immunomodulators are not clear, they do inhibit the production of cytokines suspected of contributing to POEMS syndrome such as VEGF, TNFα, and IL-6 and stimulate T cells and NK cells to increase their production of interferon gamma and interleukin 2 (see immunomodulatory imide drug's mechanism of action). A double blind study of 25 POEMS syndrome patients found significantly better results (VEGF reduction, neuromuscular function improvement, quality of life improvement) in patients treated with thalidomide plus dexamethasone compared to patients treated with a thalidomide placebo plus dexamethasone.
Since VEGF plays a central role in the symptoms of POEMS syndrome, some have tried bevacizumab, a monoclonal antibody directed against VEGF. While some reports were positive, others have reported capillary leak syndrome suspected to be the result of overly rapid lowering of VEGF levels. It therefore remains doubtful as to whether this will become part of standard treatment for POEMS syndrome.
Cetuximab is the first-line therapy for Ménétrier disease. Cetuximab is a monoclonal antibody against epidermal growth factor receptor (EGFR), and has been shown to be effective in treating Ménétrier disease.
Several medications have been used in the treatment of the condition, with variable efficacy. Such medications include: anticholinergic agents, prostaglandins, proton pump inhibitors, prednisone, and H2 receptor antagonists. Anticholinergics decrease protein loss. A high-protein diet should be recommended to replace protein loss in patients with low levels of albumin in the blood (hypoalbuminemia). Any ulcers discovered during the evaluation should be treated in standard fashion.
Severe disease with persistent and substantial protein loss despite cetuximab may require total removal of the stomach. Subtotal gastrectomy is performed by some; it may be associated with higher morbidity and mortality secondary to the difficulty in obtaining a patent and long-lasting anastomosis between normal and hyperplastic tissue. In adults, there is no FDA approved treatment other than gastrectomy and a high-protein diet. Cetuximab is approved for compassionate use in the treatment of the disease.
Pediatric cases are normally treated for symptoms with the disease clearing up in weeks to months.
There are suggestions in the medical literature that treatment with radioactive iodine for Graves' hyperthyroidism may be a trigger for pretibial myxedema which would be consistent with radioiodine ablation causing or aggravating ophthalmopathy, a condition which commonly occurs with pretibial myxedema and is believed to have common underlying features.
Other known triggers for ophthalmopathy include thyroid hormone imbalance, and tobacco smoking, but there has been little research attempting to confirm these are also risk factors for pretibial myxedema.
A biopsy of the affected skin reveals mucin in the mid- to lower- dermis. There is no increase in fibroblasts. Over time, secondary hyperkeratosis may occur, which may become verruciform. Many of these patients may also have co-existing stasis dermatitis. Elastic stains will reveal a reduction in elastic tissue.
Acropachy or thyroid acropachy refers to a dermopathy associated with Graves' disease. It is characterized by soft-tissue swelling of the hands and clubbing of the fingers. Radiographic imaging of affected extremities typically demonstrates periostitis, most commonly the metacarpal bones. The exact cause is unknown, but it is thought to be caused by stimulating auto-antibodies that are implicated in the pathophysiology of Graves' thyrotoxicosis. There is no effective treatment for acropachy.
Since it is closely associated with Graves' disease, it is associated with other manifestations of Graves' disease, such as Graves' ophthalmopathy and thyroid dermopathy.
Hereditary acropachy (also known as "isolated congenital nail clubbing") may be associated with HPGD.
Exophthalmos is commonly found in dogs. It is seen in brachycephalic (short-nosed) dog breeds because of the shallow orbit. However, it can lead to keratitis secondary to exposure of the cornea. Exophthalmos is commonly seen in the Pug, Boston Terrier, Pekingese, and Shih Tzu.
It is a common result of head trauma and pressure exerted on the front of the neck too hard in dogs. In cats, eye proptosis is uncommon and is often accompanied by facial fractures.
About 40% of proptosed eyes retain vision after being replaced in the orbit, but in cats very few retain vision. Replacement of the eye requires general anesthesia. The eyelids are pulled outward, and the eye is gently pushed back into place. The eyelids are sewn together in a procedure known as tarsorrhaphy for about five days to keep the eye in place. Replaced eyes have a higher rate of keratoconjunctivitis sicca and keratitis and often require lifelong treatment. If the damage is severe, the eye is removed in a relatively simple surgery known as enucleation of the eye.
The prognosis for a replaced eye is determined by the extent of damage to the cornea and sclera, the presence or absence of a pupillary light reflex, and the presence of ruptured rectus muscles. The rectus muscles normally help hold the eye in place and direct eye movement. Rupture of more than two rectus muscles usually requires the eye to be removed, because significant blood vessel and nerve damage also usually occurs. Compared to brachycephalic breeds, dochilocephalic (long-nosed) breeds usually have more trauma to the eye and its surrounding structures, so the prognosis is worse .
The successful treatment of xerostomia is difficult to achieve and often unsatisfactory. This involves finding any correctable cause and removing it if possible, but in many cases it is not possible to correct the xerostomia itself, and treatment is symptomatic, and also focuses on preventing tooth decay through improving oral hygiene. Where the symptom is caused by hyposalivation secondary to underlying chronic disease, xerostomia can be considered permanent or even progressive. The management of salivary gland dysfunction may involve the use of saliva substitutes and/or saliva stimulants:
- Saliva substitutes – these include SalivaMAX, water, artificial salivas (mucin-based, carboxymethylcellulose-based), and other substances (milk, vegetable oil).
- Saliva stimulants – organic acids (ascorbic acid, malic acid), chewing gum, parasympathomimetic drugs (choline esters, e.g. pilocarpine hydrochloride, cholinesterase inhibitors), and other substances (sugar-free mints, nicotinamide).
Saliva substitutes can improve xerostomia, but tend not to improve the other problems associated with salivary gland dysfunction. Parasympathomimitic drugs (saliva stimulants) such as pilocarpine may improve xerostomia symptoms and other problems associated with salivary gland dysfunction, but the evidence for treatment of radiation-induced xerostomia is limited. Both stimulants and substitutes relieve symptoms to some extent. Salivary stimulants are probably only useful in people with some remaining detectable salivary function. A systematic review of the treatment of dry mouth found no strong evidence to suggest that a specific topical therapy is effective. The review reported limited evidence that oxygenated glycerol triester spray was more effective than electrolyte sprays. Sugar free chewing gum increases saliva production but there is no strong evidence that it improves symptoms. There is a suggestion that intraoral devices and integrated mouthcare systems may be effective in reducing symptoms, but there was a lack of strong evidence. A systematic review of the management of radiotherapy induced xerostomia with parasympathomimetic drugs found that there was limited evidence to support the use of pilocarpine in the treatment of radiation-induced salivary gland dysfunction. It was suggested that, barring any contraindications, a trial of the drug be offered in the above group (at a dose of five mg three times per day to minimize side effects). Improvements can take up to twelve weeks. However, pilocarpine is not always successful in improving xerostomia symptoms. The review also concluded that there was little evidence to support the use of other parasympathomimetics in this group.
A 2013 review looking at non-pharmacological interventions reported a lack of evidence to support the effects of electrostimulation devices, or acupuncture, on symptoms of dry mouth.
Exophthalmos (also called exophthalmus, exophthalmia, proptosis, or exorbitism) is a bulging of the eye anteriorly out of the orbit. Exophthalmos can be either bilateral (as is often seen in Graves' disease) or unilateral (as is often seen in an orbital tumor). Complete or partial dislocation from the orbit is also possible from trauma or swelling of surrounding tissue resulting from trauma.
In the case of Graves' disease, the displacement of the eye is due to abnormal connective tissue deposition in the orbit and extraocular muscles which can be visualized by CT or MRI.
If left untreated, exophthalmos can cause the eyelids to fail to close during sleep leading to corneal dryness and damage. Another possible complication would be a form of redness or irritation called "Superior limbic keratoconjunctivitis", where the area above the cornea becomes inflamed as a result of increased friction when blinking. The process that is causing the displacement of the eye may also compress the optic nerve or ophthalmic artery, leading to blindness.
The tumor must be removed with as complete a surgical excision as possible. In nearly all cases, the ossicular chain must be included if recurrences are to be avoided. Due to the anatomic site of involvement, facial nerve paralysis and/or paresthesias may be seen or develop; this is probably due to mass effect rather than nerve invasion. In a few cases, reconstructive surgery may be required. Since this is a benign tumor, no radiation is required. Patients experience an excellent long term outcome, although recurrences can be seen (up to 15%), especially if the ossicular chain is not removed. Although controversial, metastases are not seen in this tumor. There are reports of disease in the neck lymph nodes, but these patients have also had other diseases or multiple surgeries, such that it may represent iatrogenic disease.
Patients treated with complete surgical excision can expect an excellent long term outcome without any problems. Recurrences may be seen in tumors which are incompletely excised.
Wide, radical, complete surgical excision is the treatment of choice, with free surgical margins to achieve the best outcome and lowest chance of recurrence. Radiation is only used for palliation. In general, there is a good prognosis, although approximately 50% of patients die from disease within 3–10 years of presentation.
Many herbal and antioxidant remedies have been advocated for chronic liver disease but the evidence is not conclusive. Some support may be found in the orthodox medical use of two of these: N-acetyl cysteine (NAC), is the treatment of choice for acetaminophen overdose; both NAC and milk-thistle (Silybum marianum) or its derivative silibinin are used in liver poisoning from certain mushrooms, notably amanita phalloides, although the use of milk-thistle is controversial. Some common herbs are known or suspected to be harmful to the liver, including black cohosh, ma huang, chaparral, comfrey, germander, greater celandine, kava, mistletoe, pennyroyal, skull cap and valerian.
The treatment of chronic liver disease depends on the cause. Specific conditions may be treated with medications including corticosteroids, interferon, antivirals, bile acids or other drugs. Supportive therapy for complications of cirrhosis include diuretics, albumin, vitamin K, blood products, antibiotics and nutritional therapy. Other patients may require surgery or a transplant. Transplant is required when the liver fails and there is no other alternative.