Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Cattle infested with bovine pediculosis are generally treated chemically, by drugs like ivermectin and cypermethrin.
There are many medications which can kill lice. Dimethicone is between 70 and 97% effective with a low rate of side effects, and thus is seen as the preferred treatment. It works by physical means and there is no evidence of pesticide resistance. Ivermectin is around 80% effective, but can cause local skin irritation. Malathion has an effectiveness around 90%, but there's the possibility of toxicity. Pyrethroids such as permethrin, while commonly used, have lower rates of effectiveness due to the resistance among lice. Effectiveness varies from 10 to 80%, depending on the population studied. Medications within a lotion appear to work better than those within a shampoo. Benzyl alcohol appears effective but it is unclear if it is better than standard treatments.
In the 15th century, topical mercury treatment was used to treat pediculosis.
Tea tree oil has been promoted as a treatment for head lice; however, there is no clear evidence of its effectiveness. A 2012 review of head lice treatment recommended against the use of tea tree oil for children because it could cause skin irritation or allergic reactions, because of contraindications, and because of a lack of knowledge about the oil's safety and effectiveness. Other home remedies, such as putting vinegar, isopropyl alcohol, olive oil, mayonnaise, or melted butter under a shower cap, have been disproven. The CDC states that swimming has no effect on lice, and can decrease the effectiveness of some treatments.
Permethrin is the most effective treatment for scabies, and remains the treatment of choice. It is applied from the neck down, usually before bedtime, and left on for about eight to 14 hours, then washed off in the morning. Care should be taken to coat the entire skin surface, not just symptomatic areas; any patch of skin left untreated can provide a "safe haven" for one or more mites to survive. One application is normally sufficient, as permethrin kills eggs and hatchlings, as well as adult mites, though many physicians recommend a second application three to seven days later as a precaution. Crusted scabies may require multiple applications, or supplemental treatment with oral ivermectin (below). Permethrin may cause slight irritation of the skin that is usually tolerable.
Treatment requires keeping the person from being repeatedly bitten and possible symptomatic use of antihistamines and corticosteroids (either topically or systemically). There however is no evidence that medications improve outcomes and symptoms usually resolve without treatment in 1–2 weeks.
Avoiding repeated bites can be difficult, since it usually requires eradicating bed bugs from a home or workplace; eradication frequently requires a combination of pesticide and non pesticide approaches. Pesticides that have historically been found to be effective include pyrethroids, dichlorvos and malathion. Resistance to pesticides has increased significantly over time and there are concerns of negative health effects from their usage. Mechanical approaches such as vacuuming up the insects and heat treating or wrapping mattresses have been recommended.
Other treatments include lindane, benzyl benzoate, crotamiton, malathion, and sulfur preparations. Lindane is effective, but concerns over potential neurotoxicity have limited its availability in many countries. It is banned in California, but may be used in other states as a second-line treatment. Sulfur ointments or benzyl benzoate are often used in the developing world due to their low cost; Some 10% sulfur solutions have been shown to be effective, and sulfur ointments are typically used for at least a week, though many people find the odor of sulfur products unpleasant. Crotamiton has been found to be less effective than permethrin in limited studies. Crotamiton or sulfur preparations are sometimes recommended instead of permethrin for children, due to concerns over dermal absorption of permethrin.
This applies once an infestation is established. In many circles the first response to cutaneous myiasis once the breathing hole has formed, is to cover the air hole thickly with petroleum jelly. Lack of oxygen then forces the larva to the surface, where it can more easily be dealt with. In a clinical or veterinary setting there may not be time for such tentative approaches, and the treatment of choice might be more direct, with or without an incision. First the larva must be eliminated through pressure around the lesion and the use of forceps. Secondly the wound must be cleaned and disinfected. Further control is necessary to avoid further reinfestation.
Livestock may be treated prophylactically with slow release boluses containing ivermectin which can provide long-term protection against the development of the larvae.
Sheep also may be dipped, a process which involves drenching the animals in persistent insecticide to poison the larvae before they develop into a problem.
Because they live so close to the outside of the body, "Thelazia" is one of the few nematode infections which can be treated topically.
Topical treatment of livestock, dogs and cats with organophosphates (such as ecothiopate iodide or isofluorophate) and systemic treatment with anthelmintics (such as ivermectin, levamisole, and doramectin) are recommended by the Merck Veterinary Manual. Other sources have reported positive results treating dogs with moxidectin, imidacloprid, or milbemycin oxime.
For the treatment of human cases, removal of the worm is suggested. Topical treatment with cocaine or thiabendazole have also been reported to kill the worms in human cases.
Because most, if not all, species of "Thelazia" are spread by flies, sanitary practices which reduce the presence of flies will also reduce the spread of thelaziasis.
A body lice infestation is treated by improving the personal hygiene of the infested person, including assuring a regular (at least weekly) change of clean clothes. Clothing, bedding, and towels used by the infested person should be laundered using hot water (at least ) and machine dried using the hot cycle.
Sometimes the infested person also is treated with a pediculicide (a medicine that can kill lice); however, a pediculicide generally is not necessary if hygiene is maintained and items are laundered appropriately at least once a week. A pediculicide should be applied exactly as directed on the bottle or by a physician.
Delousing can also be practically achieved by boiling all clothes and bedding, or washing them at a high temperature. A temperature of for 5 minutes will kill most of the adults and prevent eggs from hatching. Leaving the clothes unwashed, but unworn for a full week, also results in the death of lice and eggs.
Where this is not practical or possible, powder dusting with 10% DDT, 1% malathion or 1% permethrin is also effective.
Oral ivermectin at a dose of 12 mg on days 0, 7 and 14 has been used in a small trial of 33 people in Marseilles, but did not result in complete eradication, although there was a significant fall in the number of parasites and proportion of people infected. At the moment, ivermectin cannot be routinely recommended for the treatment of body lice.
Medication, insecticide or burning of clothing and bedding is usually not necessary, as the problem normally goes away with daily bathing, weekly (or more frequent) laundering and drying of clothing, bedding, towels, etc. in a hot clothes drier.
As the disease is self-limiting, at least when exposure to the parasite is limited, management is mostly confined to treatment. Due to the secondary infection that can cause serious medical issues, the recommended course of action upon diagnosis is a surgical extraction of the fleas followed by the application of a topical antibiotic. Care should be taken to avoid tearing the flea during the extraction procedures as severe inflammation will result. The same will occur if part of the flea is left behind. Sterile equipment should always be used, as contaminated instruments could act as mechanical vectors for pathogens to enter the body.
There is no drug that has proven to be effective against embedded fleas. Oral niridazole was once considered a therapeutic drug, but well-designed studies are lacking and, given the severe adverse effects, this is one drug that is likely to cause more harm than good. However, it has some anecdotal evidence of lysing the fleas altogether. Oral ivermectin is considered by some in endemic areas to be a panacea against the fleas but studies using high doses have failed to validate this hypothesis. Other drugs such as topical ivermectin and metrifonate have been somewhat successful, but not enough to be significant. [2,5] For superinfections, trimethoprim, sulfamethoxazole, metronidazole, amoxicillin, (with/without clavulanate) have been used successfully, though these treat only secondary infections.
Successful topical treatments also include cryotherapy and electrodesiccation of the lesion. If formaldehyde, chloroform, or DDT are used topically, care should be taken when dealing with the resulting morbidity. The "T. penetrans" flea can also be suffocated using occlusive petrolatum, while Vaseline will kill the organism as well, most likely due to suffocation as the stigmatas would be covered. The gum of the mammee apple ("Mammea americana"), a fruit that also goes by the name Saint Domingo apricot, has also been used to kill the chigoe flea, though this has not been reported in the main "T. penetrans" literature.
Even without treatment, the burrowed fleas will die within five weeks and are naturally sloughed off as the skin sheds.
The first control method is preventive and aims to eradicate the adult flies before they can cause any damage and is called vector control. The second control method is the treatment once the infestation is present, and concerns the infected animals (including humans).
The principal control method of adult populations of myiasis inducing flies involves insecticide applications in the environment where the target livestock is kept. Organophosphorus or organochlorine compounds may be used, usually in a spraying formulation. One alternative prevention method is the sterile insect technique (SIT) where a significant number of artificially reared sterilized (usually through irradiation) male flies are introduced. The male flies compete with wild breed males for females in order to copulate and thus cause females to lay batches of unfertilized eggs which cannot develop into the larval stage.
One prevention method involves removing the environment most favourable to the flies, such as by removal of the tail. Another example is the crutching of sheep, which involves the removal of wool from around the tail and between the rear legs, which is a favourable environment for the larvae. Another, more permanent, practice which is used in some countries is mulesing, where skin is removed from young animals to tighten remaining skin – leaving it less prone to fly attack.
To prevent myiasis in humans, there is a need for general improvement of sanitation, personal hygiene, and extermination of the flies by insecticides. Clothes should be washed thoroughly, preferably in hot water, dried away from flies, and ironed thoroughly. The heat of the iron kills the eggs of myiasis-causing flies.
Amphistomiasis is considered a neglected tropical disease, with no prescription drug for treatment and control. Therefore, management of infestation is based mainly on control of the snail population, which transmit the infective larvae of the flukes. However, there are now drugs shown to be effective including resorantel, oxyclozanide, clorsulon, ivermectin, niclosamide, bithional and levamisole. An in vitro demonstration shows that plumbagin exhibits high efficacy on adult flukes. Since the juvenile flukes are the causative individuals of the disease, effective treatment means control of the immature fluke population. Prophylaxis is therefore based on disruption of the environment (such as proper drainage) where the carrier snails inhabit, or more drastic action of using molluscicides to eradicate the entire population. For treatment of the infection, drugs effective against the immature flukes are recommended for drenching. For this reason oxyclozanide is advocated as the drug of choice. It effectively kills the flukes within a few hours and it effective against the flukes resistant to other drugs. The commercially prescribed dosage is 5 mg/kg body weight or 18.7 mg/kg body weight in two divided dose within 72 hours. Niclosamide is also extensively used in mass drenching of sheep. Successfully treated sheep regain appetite within a week, diarrhoea stops in about three days, and physiological indicators (such as plasma protein and albumin levels) return to normal in a month.
Medication is the primary treatment for pinworm infection. They are so effective that many medical scientists regard hygienic measures as impractical. However, reinfection is frequent regardless of the medication used. Total elimination of the parasite in a household may require repeated doses of medication for up to a year or more. Because the drugs kill the adult pinworms, but not the eggs, the first retreatment is recommended in two weeks. Also, if one household member spreads the eggs to another, it will be a matter of two or three weeks before those eggs become adult worms and thus amenable to treatment. Asymptomatic infections, often in small children, can serve as reservoirs of infection, and therefore the entire household should be treated regardless of whether or not symptoms are present.
The benzimidazole compounds albendazole (brand names e.g., "Albenza", "Eskazole", "Zentel" and "Andazol") and mebendazole (brand names e.g., "Ovex", "Vermox", "Antiox" and "Pripsen") are the most effective. They work by inhibiting the microtubule function in the pinworm adults, causing glycogen depletion, thereby effectively starving the parasite. A single 100 milligram dose of mebendazole with one repetition after a week, is considered the safest, and is usually effective with cure rate of 96%. Mebendazole has no serious side effects, although abdominal pain and diarrhea have been reported. Pyrantel pamoate (also called pyrantel embonate, brand names e.g., "Reese's Pinworm Medicine", "Pin-X", "Combantrin", "Anthel", "Helmintox", and "Helmex") kills adult pinworms through neuromuscular blockade, and is considered as effective as the benzimidazole compounds and is used as a second-line medication. Other medications are piperazine, which causes flaccid paralysis in the adult pinworms, and pyrvinium pamoate (also called pyrvinium embonate), which works by inhibiting oxygen uptake of the adult pinworms. Pinworms located in the genitourinary system (in this case, female genital area) may require other drug treatments.
Praziquantel is recommended in both adult and pediatric cases with dosages of 75 mg/kg/d in 3 doses for 1 day. Praziquantel is a Praziniozoquinoline derivative that alters the calcium flux through the parasite tectum and causes muscular paralysis and detachment of the fluke. Prizaquantel should be taken with liquids during a meal and as provided commercially as Biltricide. Praziquantel is not approved by the U.S. Food and Drug Administration (FDA) for treatment of metagonimiasis, but is approved for use on other parasitic infections.
Praziquantel has some side effects but they are generally relatively mild and transient and a review of evidence shows it overall a well-tolerated drug. Possible side effects include abdominal pain, allergy, diarrhea, headache, liver problems, nausea or vomiting, exacerbation of porphyries, pruritis, rash, somnolence, vertigo, or dizziness. In fact, in 2002, the World Health Organization recommended the use of Praziquantel in pregnant and lactating women, though controlled trials are still needed to verify this.
Another possible drug option is Tetrachloroethylene, a chlorinated hydrocarbon, but its use has been superseded by new antihelminthic drugs (like Praziquantel). A 1978 study also looked at the efficacy of several drugs on metagonimiasis infection, including bithionol, niclosamide, nicoflan, and Praziquantel. All drugs showed lower prevalence of eggs in feces, however only Praziquantel showed complete radical cure. Therefore, the authors concluded Praziquantel was the most highly effective, was very well tolerated, and was the most promising drug against metagonimiasis.
Parasitic infections can usually be treated with antiparasitic drugs.
Albendazole and mebendazole have been the treatments administered to entire populations to control hookworm infection. However, it is a costly option and both children and adults become reinfected within a few months after deparasitation occurs raising concerns because the treatment has to repeatedly be administered and drug resistance may occur.
Another medication administered to kill worm infections has been pyrantel pamoate. For some parasitic diseases, there is no treatment and, in the case of serious symptoms, medication intended to kill the parasite is administered, whereas, in other cases, symptom relief options are used. Recent papers have also proposed the use of viruses to treat infections caused by protozoa.
Affected dogs need to be isolated from other dogs and their bedding, and places they have occupied must be thoroughly cleaned. Other dogs in contact with a diagnosed case should be evaluated and treated. A number of parasitical treatments are useful in treating canine scabies. Sulfurated lime (a mixture of calcium polysulfides) rinses applied weekly or biweekly are effective (the concentrated form for use on plants as a fungicide must be diluted 1:16 or 1:32 for use on animal skin).
Selamectin is licensed for treatment in dogs by veterinary prescription in several countries; it is applied as a dose directly to the skin, once per month (the drug does not wash off). A related and older drug ivermectin is also effective and can be given by mouth for two to four weekly treatments or until two negative skin scrapings are achieved. Oral ivermectin is not safe to use on some collie-like herding dogs, however, due to possible homozygous MDR1 (P-glycoprotein) mutations that increase its toxicity by allowing it into the brain. Ivermectin injections are also effective and given in either weekly or every two weeks in one to four doses, although the same MDR1 dog restrictions apply.
Affected cats can be treated with fipronil and milbemycin oxime.
Topical 0.01% ivermectin in oil (Acarexx) has been reported to be effective in humans, and all mite infections in many types of animals (especially in ear mite infections where the animal cannot lick the treated area), and is so poorly absorbed that systemic toxicity is less likely in these sites. Nevertheless, topical ivermectin has not been well enough tested to be approved for this use in dogs, and is theoretically much more dangerous in zones where the animal can potentially lick the treated area. Selamectin applied to the skin (topically) has some of the same theoretical problems in collies and MDR1 dogs as ivermectin, but it has nevertheless been approved for use for all dogs provided that the animal can be observed for 8 hours after the first monthly treatment. Topical permethrin is also effective in both dogs and humans, but is toxic to cats.
Afoxolaner (oral treatment with a chewable tablet containing afoxolaner 2.27% w/w) has been shown to be efficient against both sarcoptic and demodectic mange in dogs.
Sarcoptic mange is transmissible to humans who come into prolonged contact with infested animals, and is distinguished from human scabies by its distribution on skin surfaces covered by clothing. For treatment of sarcoptic infection in humans, see scabies. For demodetic infection in humans, which is not as severe as it is in animals with thicker coats (such as dogs), see "Demodex folliculorum".
Tapeworms are treated with medications taken by mouth, usually in a single dose. The drug of choice for tapeworm infections is praziquantel. Niclosamide can also be used.
One treatment for sparganosis is praziquantel, administered at a dose of 120 to 150 mg/kg body weight over 2 days; however, praziquantel has had limited success. In general, infestation by one or a few sparganum larvae is often best treated by surgical removal.
DNA analysis of rare worms removed surgically can provide genome information to identify and characterise each parasite; treatments for the more common tapeworms can be cross-checked to see whether they are also likely to be effective against the species in question.
If infested, animals should be removed from the flock and all wool in and around roughly a 1 cm or larger radius of the discoloured area clipped. The area is treated with insecticide to kill the maggots. Soothing cream can also be applied to skin grazes or lesions caused by the maggots. Clippings should be collected after removal and placed in a maggot-proof bag and left closed in the sun, to ensure that no other animal is infected.
Both over-the-counter and prescription medications are available for treatment of pubic lice infestations. A lice-killing lotion containing 1% permethrin or a mousse containing pyrethrins and piperonyl butoxide can be used to treat pubic ("crab") lice. These products are available over-the-counter without a prescription at a local drug store or pharmacy. These medications are safe and effective when used exactly according to the instructions in the package or on the label. Effectiveness of treatment is increased when the pediculicide is left on the skin and hair for at least an hour A second round of treatment is recommended within the following seven to ten days to kill newly hatched nymphs. Lindane is a second line treatment due to concerns of toxicity. The Centers for Disease Control and Prevention (CDC) states that lindane should not be used by persons who have extensive dermatitis, women who are pregnant or lactating or children aged under two years. The FDA similarly warns against use in patients with a history of uncontrolled seizure disorders and cautious use in infants, children, the elderly, and individuals with other skin conditions (e.g., atopic dermatitis, psoriasis) and in those who weigh less than 110 lbs (50 kg).
Bedding and clothing is laundered and sexual contact should be avoided until no signs of infestation exists. A second treatment is occasionally required if not improved after 3 to 7 days.
Pubic lice are primarily spread through sexual intercourse. Therefore, all partners with whom the patient has had sexual contact within the previous 30 days should be evaluated and treated, and sexual contact should be avoided until all partners have successfully completed treatment and are thought to be cured. Because of the strong association between the presence of pubic lice and classic sexually transmitted infections (STIs), patients may be diagnosed with other STIs.
Because the crab louse needs hair to attach its eggs to, shaving the pubic area denies them this opportunity and should be enough to eliminate an infestation. However, the eyelids should be checked as well and treated accordingly.
Infections of the eyelashes may be treated with either petroleum jelly applied twice daily for 10 days or malathion, phenothrin, and carbaryl.
There are several preventative measures which are used to reduce the occurrence of flystrike in sheep flocks, these include:
- Controlling intestinal parasites to prevent scours and a suitable surface for flystrike
- Scheduled shearing and crutching
- Removing the tails of lambs at weaning
- Mulesing
- Preventative chemical treatments before fly infestation risk is high
- Breeding for traits that reduce the likelihood of infestation
- Removing or avoiding large maunure heaps or other sites attractive to the flies
- Using fly traps near the flock to attract and kill any local flies, helping to minimise the local populations. NB: Traps often emit a pungent smell and are best placed away from human activity.
None of these measures completely stop the occurrence of fly strike in sheep, and regular treatment is still necessary.
Ear mites of dogs and cats can be treated with any of the spot-on preparations available from veterinary surgeons as well as over the counter at many pet stores and online. If the chosen solution does not destroy mite eggs, treatment should be repeated after one month, to catch the next generation of mites that will have hatched by then. Relief, in terms of the cat or dog no longer scratching at his or her ears, will be noticeable within a few hours. However, since mite irritation is partly allergic (see scabies), symptoms may also outlive mites by weeks. Moreover, it may take topical antibiotics and several weeks to clear infected external wounds caused by scratching on the exterior surfaces of cat and dog ears.
Common home remedy treatment options include household ingredients such as isopropyl alcohol, acetic acid (vinegar), boric acid, tea tree oil, coconut oil, and many other plant based extracts, in varying proportions.
Option for treating ear mites in rabbits are the related antiparasitics ivermectin and selamectin. Both of these antiparasitics have also been used with good effect in cats and dogs. A topical preparation of 0.01% ivermectin (Acarexx) can be used directly as an oil in cat ears, and the related new generation drug selamectin (brand name "Revolution") is available as a once-per-month skin treatment for both dogs and cats, which will prevent new mite infestation as well as a number of other parasitic diseases. As with ivermectin, selamectin must be used with caution in collies and herder breeds with the possibility for homozygous MDR1 mutations. A single treatment with a topical formulation containing fipronil, (S)-methoprene, eprinomectin and praziquantel was shown to be efficient for the prevention of "Otodectes cynotis" infestation in cats.
Cure rates are extremely good with modern treatments, but successful cure results may be of no symptomatic benefit to patients.
Broad-spectrum benzimidazoles (such as albendazole and mebendazole) are the first line treatment of intestinal roundworm and tapeworm infections. Macrocyclic lactones (such as ivermectin) are effective against adult and migrating larval stages of nematodes. Praziquantel is the drug of choice for schistosomiasis, taeniasis, and most types of food-borne trematodiases. Oxamniquine is also widely used in mass deworming programmes. Pyrantel is commonly used for veterinary nematodiasis. Artemisinins and derivatives are proving to be candidates as drugs of choice for trematodiasis.