Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Shade, insect repellent-impregnated ear tags, and lower stocking rates may help prevent IBK. Early identification of the disease also helps prevent spread throughout the herd. Treatment is with early systemic use of a long-acting antibiotic such as tetracycline or florfenicol. Subconjunctival injections with procaine penicillin or other antibiotics are also effective, providing a "bubble" of antibiotic which releases into the eye slowly over several days.
Anti-inflammatory therapy can help shorten recovery times, but topical corticosteroids should be used with care if corneal ulcers are present.
"M. bovis" uses several different serotyped fimbriae as virulence factors, consequently pharmaceutical companies have exploited this to create vaccines. However, currently available vaccines are not reliable.
Antibiotics are commonly used to prevent secondary bacterial infection. There are no specific antiviral drugs in common use at this time for FVR, although one study has shown that ganciclovir, PMEDAP, and cidofovir hold promise for treatment. More recent research has indicated that systemic famciclovir is effective at treating this infection in cats without the side effects reported with other anti-viral agents. More severe cases may require supportive care such as intravenous fluid therapy, oxygen therapy, or even a feeding tube. Conjunctivitis and corneal ulcers are treated with topical antibiotics for secondary bacterial infection.
Lysine is commonly used as a treatment, however in a 2015 systematic review, where the authors investigated all clinical trials with cats as well as "in vitro" studies, concluded that lysine supplementation is not effective for the treatment or prevention of feline herpesvirus 1 infection.
The infection is treated with antibiotics. Tetracyclines and chloramphenicol are the drugs of choice for treating patients with psittacosis. Most persons respond to oral therapy doxycycline, tetracycline hydrochloride, or chloramphenicol palmitate. For initial treatment of severely ill patients, doxycycline hyclate may be administered intravenously. Remission of symptoms usually is evident within 48–72 hours. However, relapse can occur, and treatment must continue for at least 10–14 days after fever abates.
When infection attacks the body, "anti-infective" drugs can suppress the infection. Several broad types of anti-infective drugs exist, depending on the type of organism targeted; they include antibacterial (antibiotic; including antitubercular), antiviral, antifungal and antiparasitic (including antiprotozoal and antihelminthic) agents. Depending on the severity and the type of infection, the antibiotic may be given by mouth or by injection, or may be applied topically. Severe infections of the brain are usually treated with intravenous antibiotics. Sometimes, multiple antibiotics are used in case there is resistance to one antibiotic. Antibiotics only work for bacteria and do not affect viruses. Antibiotics work by slowing down the multiplication of bacteria or killing the bacteria. The most common classes of antibiotics used in medicine include penicillin, cephalosporins, aminoglycosides, macrolides, quinolones and tetracyclines.
Not all infections require treatment, and for many self-limiting infections the treatment may cause more side-effects than benefits. Antimicrobial stewardship is the concept that healthcare providers should treat an infection with an antimicrobial that specifically works well for the target pathogen for the shortest amount of time and to only treat when there is a known or highly suspected pathogen that will respond to the medication.
Vaccinations exist for several biological BRD precursors, but the multitude of possible precursors complicates the process of choosing a vaccine regime. Additionally, vaccines are not completely effective in stopping the disease, but are merely helpful in mitigation. Many of the problems with vaccine effectiveness rest with improper use, such as failing to time vaccine doses appropriately, or not administering them before shipping.
Vaccines are available for a number of viral/bacterial agents, including IBR, PI3, BVD, BRSV, Pasteurella, and "Haemophilus somnus". Many of these vaccines can be given simultaneously, because of their similar dosing schedule. For example, IBR, PI3, BVD, and BRSV vaccines are often sold in combination with each other.
There is a vaccine for FHV-1 available (ATCvet code: , plus various combination vaccines), but although it limits or weakens the severity of the disease and may reduce viral shedding, it does not prevent infection with FVR. Studies have shown a duration of immunity of this vaccine to be at least three years. The use of serology to demonstrate circulating antibodies to FHV-1 has been shown to have a positive predictive value for indicating protection from this disease.
For the allergic type, cool water poured over the face with the head inclined downward constricts capillaries, and artificial tears sometimes relieve discomfort in mild cases. In more severe cases, nonsteroidal anti-inflammatory medications and antihistamines may be prescribed. Persistent allergic conjunctivitis may also require topical steroid drops.
Lesions of paravaccinia virus will clear up with little to no scaring after 4 to 8 weeks. An antibiotic may be prescribed by a physician to help prevent bacterial infection of the lesion area. In rare cases, surgical removal of the lesions can be done to help increase rate of healing, and help minimize risk of bacterial or fungal infection. Upon healing, no long term side effects have been reported.
Coopers Animal Health , a division of Schering-Plough, has released a new vaccine "Piliguard" in Australia. The vaccine contains three strains of "Morexella bovis" (SAH38, FLA 64, EPP 63) pilli antigen. This stimulate antibody production against the bacterial pilli to prevent their attachment and invasion of the conjuntiva. The company claims the vaccine reduces the incidence and severity of the disease in an individual animal which directly reduces animal suffering and production loss on top of limiting the spread of disease through the herd. This, in turn, reduces the amount of antibioitcs and fly repellent needed during high-risk seasons. The vaccine is marketed in multidose vials and has an adjuvant to create a long-term subcutaneous depot. This means no booster shot is necessary, but severe local reaction can be seen in people who accidentally inoculate themselves. Calves as young as one week old can be treated and no meat, milk, or export slaughter withdrawal is needed.
In the absence of vaccination (often because calves are bought unvaccinated), antibiotics can help to stop the bacterial factors of the disease. The Virginia Cooperative Extension recommends Micotil, Nuflor, and Baytril 100 as newer antibiotics that do not need daily dosing, but also notes that Naxcel, Excenel, and Adspec are effective as well.
Viral conjunctivitis usually resolves on its own and does not require any specific treatment. Antihistamines (e.g., diphenhydramine) or mast cell stabilizers (e.g., cromolyn) may be used to help with the symptoms. Povidone iodine has been suggested as a treatment, but as of 2008 evidence to support it was poor.
Treatment usually involves a prescription of doxycycline (a normal dose would be 100 mg every 12 hours for adults) or a similar class of antibiotics. Oxytetracycline and imidocarb have also been shown to be effective. Supportive therapy such as blood products and fluids may be necessary.
Because "B. suis" is facultative and intracellular, and is able to adapt to environmental conditions in the macrophage, treatment failure and relapse rates are high. The only effective way to control and eradicate zoonosis is by vaccination of all susceptible hosts and elmination of infected animals. The "Brucella abortus" (rough LPS "Brucella") vaccine, developed for bovine brucellosis and licensed by the USDA Animal Plant Health Inspection Service, has shown protection for some swine and is also effective against "B. suis" infection, but currently no approved vaccine for swine brucellosis is available.
The symptoms of phlyctenular keratoconjunctivitis are primarily treated with application of an appropriate corticosteroid eye drop, such as prednisolone acetate (Pred Forte) or loteprednol (Lotemax). Loteprednol is increasingly preferred due to its lower risk of elevating intraocular pressure. The corticosteroid suppresses the immune response, reducing inflammation and improving most symptoms.
The causative agent (i.e. the source of the antigen that triggered the hypersensitive immune response) should also be identified. "Staphylococcus aureus" is usually the primary suspect, along with "Mycobacterium tuberculosis" in areas where TB is endemic, followed by "Chlamydia trachomatis". Active bacterial infections may be treated with a topical antibiotic or a combination antibiotic-steroid eye drop, such as tobramycin/dexamethasone (Tobradex). An oral tetracycline antibiotic (such as doxycycline) may be used in systemic or particularly severe/intractable infections. Erythromycin may be an effective alternative, especially in pediatric cases where the side effects of tetracyclines are unacceptable.
Artificial tears can reduce dryness and discomfort from corneal lesions. Photophobic discomfort can be mitigated with dark sunglasses.
Vaccines against anaplasmosis are available. Carrier animals should be eliminated from flocks. Tick control may also be useful although it can be difficult to implement.
Epithelial keratitis is treated with topical antivirals, which are very effective with low incidence of resistance. Treatment of the disease with topical antivirals generally should be continued for 10–14 days. Aciclovir ophthalmic ointment and Trifluridine eye drops have similar effectiveness but are more effective than Idoxuridine and Vidarabine eye drops. Oral acyclovir is as effective as topical antivirals for treating epithelial keratitis, and it has the advantage of no eye surface toxicity. For this reason, oral therapy is preferred by some ophthalmologists.
Ganciclovir and brivudine treatments were found to be equally as effective as acyclovir in a systematic review.
Valacyclovir, a pro-drug of acyclovir likely to be just as effective for ocular disease, can cause thrombotic thrombocytopenic purpura/Hemolytic-uremic syndrome in severely immunocompromised patients such as those with AIDS; thus, it must be used with caution if the immune status is unknown.
Topical corticosteroids are contraindicated in the presence of active herpetic epithelial keratitis; patients with this disease who are using systemic corticosteroids for other indications should be treated aggressively with systemic antiviral therapy.
The effect of interferon with an antiviral agent or an antiviral agent with debridement needs further assessment.
Herpetic stromal keratitis is treated initially with prednisolone drops every 2 hours
accompanied by a prophylactic antiviral drug: either topical antiviral or an oral agent such as acyclovir or valacyclovir. The prednisolone drops are tapered every 1–2 weeks depending on the degree of clinical improvement. Topical antiviral medications are not absorbed by the cornea through an intact epithelium, but orally administered acyclovir penetrates an intact cornea and anterior chamber. In this context, oral acyclovir might benefit the deep corneal inflammation of disciform keratitis.
There is usually an indication for a specific identification of an infectious agent only when such identification can aid in the treatment or prevention of the disease, or to advance knowledge of the course of an illness prior to the development of effective therapeutic or preventative measures. For example, in the early 1980s, prior to the appearance of AZT for the treatment of AIDS, the course of the disease was closely followed by monitoring the composition of patient blood samples, even though the outcome would not offer the patient any further treatment options. In part, these studies on the appearance of HIV in specific communities permitted the advancement of hypotheses as to the route of transmission of the virus. By understanding how the disease was transmitted, resources could be targeted to the communities at greatest risk in campaigns aimed at reducing the number of new infections. The specific serological diagnostic identification, and later genotypic or molecular identification, of HIV also enabled the development of hypotheses as to the temporal and geographical origins of the virus, as well as a myriad of other hypothesis. The development of molecular diagnostic tools have enabled physicians and researchers to monitor the efficacy of treatment with anti-retroviral drugs. Molecular diagnostics are now commonly used to identify HIV in healthy people long before the onset of illness and have been used to demonstrate the existence of people who are genetically resistant to HIV infection. Thus, while there still is no cure for AIDS, there is great therapeutic and predictive benefit to identifying the virus and monitoring the virus levels within the blood of infected individuals, both for the patient and for the community at large.
Treatment of asymptomatic carriers should be considered if parasites are still detected after 3 months. In mild-to-moderate babesiosis, the treatment of choice is a combination of atovaquone and azithromycin. This regimen is preferred to clindamycin and quinine because side effects are fewer. The standard course is 7 to 10 days, but this is extended to at least 6 weeks in people with relapsing disease. Even mild cases are recommended to be treated to decrease the chance of inadvertently transmitting the infection by donating blood. In life-threatening cases, exchange transfusion is performed. In this procedure, the infected red blood cells are removed and replaced with uninfected ones.
Imizol is a drug used for treatment of babesiosis in dogs.
Extracts of the poisonous, bulbous plant "Boophone disticha" are used in the folk medicine of South Africa to treat equine babesiosis. "B. disticha" is a member of the daffodil family Amaryllidaceae and has also been used in preparations employed as arrow poisons, hallucinogens, and in embalming. The plant is rich in alkaloids, some of which display an action similar to that of scopolamine.
Paracetamol (acetaminophen) and NSAIDs, such as ibuprofen, may be used to reduce fever and pain. Prednisone, a corticosteroid, while used to try to reduce throat pain or enlarged tonsils, remains controversial due to the lack of evidence that it is effective and the potential for side effects. Intravenous corticosteroids, usually hydrocortisone or dexamethasone, are not recommended for routine use but may be useful if there is a risk of airway obstruction, a very low platelet count, or hemolytic anemia.
There is little evidence to support the use of antivirals such as aciclovir and valacyclovir although they may reduce initial viral shedding. Although antivirals are not recommended for people with simple infectious mononucleosis, they may be useful (in conjunction with steroids) in the management of severe EBV manifestations, such as EBV meningitis, peripheral neuritis, hepatitis, or hematologic complications.
Although antibiotics exert no antiviral action they may be indicated to treat bacterial secondary infections of the throat, such as with streptococcus (strep throat). However, ampicillin and amoxicillin are not recommended during acute Epstein–Barr virus infection as a diffuse rash may develop.
Infectious mononucleosis is generally self-limiting, so only symptomatic or supportive treatments are used. The need for rest and return to usual activities after the acute phase of the infection may reasonably be based on the person's general energy levels. Nevertheless, in an effort to decrease the risk of splenic rupture experts advise avoidance of contact sports and other heavy physical activity, especially when involving increased abdominal pressure or the Valsalva maneuver (as in rowing or weight training), for at least the first 3–4 weeks of illness or until enlargement of the spleen has resolved, as determined by a treating physician.
Most infections are mild and require no therapy or only symptomatic treatment. Because there is no virus-specific therapy, serious adenovirus illness can be managed only by treating symptoms and complications of the infection. Deaths are exceedingly rare but have been reported.
No specific treatment is available, but antibiotics can be used to prevent secondary infections.
Vaccines are available (ATCvet codes: for the inactivated vaccine, for the live vaccine; plus various combinations).
Biosecurity protocols including adequate isolation, disinfection are important in controlling the spread of the disease.
Paravaccinia virus originates from livestock infected with bovine papular stomatitis. When a human makes physical contact with the livestock's muzzle, udders, or an infected area, the area of contact will become infected. Livestock may not show symptoms of bovine papular stomatitis and still be infected and contagious. Paravaccinia can enter the body though all pathways including: skin contact by mechanical means, through the respiratory tract, or orally. Oral or respiratory contraction may be more likely to cause systemic symptoms such as lesions across the whole body
A person who has not previously been infected with paravaccinia virus should avoid contact with infected livestock to prevent contraction of disease. There is no commercially available vaccination for cattle or humans against paravaccinia. However, following infection, immunization has been noted in humans, making re-infection difficult. Unlike other pox viruses, there is no record of contracting paravaccinia virus from another human. Further, cattle only show a short immunization after initial infection, providing opportunity to continue to infect more livestock and new human hosts.
Allergen immunotherapy (AIT) treatment involves administering doses of allergens to accustom the body to substances that are generally harmless (pollen, house dust mites), thereby inducing specific long-term tolerance. Allergy immunotherapy can be administered orally (as sublingual tablets or sublingual drops), or by injections under the skin (subcutaneous). Discovered by Leonard Noon and John Freeman in 1911, allergy immunotherapy represents the only causative treatment for respiratory allergies.
Experimental research has targeted adhesion molecules known as selectins on epithelial cells. These molecules initiate the early capturing and margination of leukocytes from circulation. Selectin antagonists have been examined in preclinical studies, including cutaneous inflammation, allergy and ischemia-reperfusion injury. There are four classes of selectin blocking agents: (i) carbohydrate based inhibitors targeting all P-, E-, and L-selectins, (ii) antihuman selectin antibodies, (iii) a recombinant truncated form of PSGL-1 immunoglobulin fusion protein, and (iv) small-molecule inhibitors of selectins. Most selectin blockers have failed phase II/III clinical trials, or the studies were ceased due to their unfavorable pharmacokinetics or prohibitive cost. Sphingolipids, present in yeast like "Saccharomyces cerevisiae" and plants, have also shown mitigative effects in animal models of gene knockout mice.