Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Succinic acid has been studied, and shown effective for both Leighs disease, and MELAS syndrome. If the mutation is in succinate dehydrogenase then there is a build up of succinate, in which case succinic acid won't work so the treatment is with fumaric acid to replace the fumarate than can not be made from succinate. A high-fat, low-carbohydrate diet may be followed if a gene on the X chromosome is implicated in an individual's Leigh syndrome. Thiamine (vitamin B) may be given if a deficiency of pyruvate dehydrogenase is known or suspected. The symptoms of lactic acidosis are treated by supplementing the diet with sodium bicarbonate (baking soda) or sodium citrate, but these substances do not treat the cause of Leigh syndrome. Dichloroacetate may also be effective in treating Leigh syndrome-associated lactic acidosis; research is ongoing on this substance. Coenzyme Q10 supplements have been seen to improve symptoms in some cases.
Clinical trials of the drug EPI-743 for Leigh disease are ongoing.
In 2016, John Zhang and his team at New Hope Fertility Center in New York, USA, performed a spindle transfer mitochondrial donation technique on a mother in Mexico who was at risk of producing a baby with Leigh disease. A healthy boy was born on 6 April 2016. However, it is not yet certain if the technique is completely reliable and safe.
Currently, there is no cure for infantile Refsum disease syndrome, nor is there a standard course of treatment. Infections should be guarded against to prevent such complications as pneumonia and respiratory distress. Other treatment is symptomatic and supportive. Patients show variable lifespans with some individuals surviving until adulthood and into old age.
Currently Sandhoff disease does not have any standard treatment and does not have a cure. However, a person suffering from the disease needs proper nutrition, hydration, and maintenance of clear airways. To reduce some symptoms that may occur with Sandhoff disease, the patient may take anticonvulsants to manage seizures or medications to treat respiratory infections, and consume a precise diet consisting of puree foods due to difficulties swallowing. Infants with the disease usually die by the age of 3 due to respiratory infections. The patient must be under constant surveillance because they can suffer from aspiration or lack the ability to change from the passageway to their lungs versus their stomach and their spit travels to the lungs causing bronchopneumonia. The patient also lacks the ability to cough and therefore must undergo a treatment to shake up their body to remove the mucus from the lining of their lungs. Medication is also given to patients to lessen their symptoms including seizures.
Currently the government is testing several treatments including N-butyl-deoxynojirimycin in mice, as well as stem cell treatment in humans and other medical treatments recruiting test patients.
A painkiller available in several European countries, Flupirtine, has been suggested to possibly slow down the progress of NCL, particularly in the juvenile and late infantile forms. No trial has been officially supported in this venue, however. Currently the drug is available to NCL families either from Germany, Duke University Medical Center in Durham, North Carolina, and the Hospital for Sick Children in Toronto, Ontario.
Currently there is no widely accepted treatment that can cure, slow down, or halt the symptoms in the great majority of patients with NCL. However, seizures may be controlled or reduced with use of anti-epileptic drugs. Additionally, physical, speech, and occupational therapies may help affected patients retain functioning for as long as possibleSeveral experimental treatments are under investigation.
Cardiac and respiratory complications are treated symptomatically. Physical and occupational therapy may be beneficial for some patients. Alterations in diet may provide temporary improvement but will not alter the course of the disease. Genetic counseling can provide families with information regarding risk in future pregnancies.
On April 28, 2006 the US Food and Drug Administration approved a Biologic License Application (BLA) for Myozyme (alglucosidase alfa, rhGAA), the first treatment for patients with Pompe disease, developed by a team of Duke University researchers. This was based on enzyme replacement therapy using biologically active recombinant human alglucosidase alfa produced in Chinese Hamster Ovary cells. Myozyme falls under the FDA Orphan Drug designation and was approved under a priority review.
The FDA has approved Myozyme for administration by intravenous infusion of the solution. The safety and efficacy of Myozyme were assessed in two separate clinical trials in 39 infantile-onset patients with Pompe disease ranging in age from 1 month to 3.5 years at the time of the first infusion. Myozyme treatment clearly prolongs ventilator-free survival and overall survival. Early diagnosis and early treatment leads to much better outcomes. The treatment is not without side effects which include fever, flushing, skin rash, increased heart rate and even shock; these conditions, however, are usually manageable.
Myozyme costs an average of US$300,000 a year and must be taken for the patients' entire life, so some American insurers have refused to pay for it. On August 14, 2006, Health Canada approved Myozyme for the treatment of Pompe disease. On June 14, 2007 the Canadian Common Drug Review issued their recommendations regarding public funding for Myozyme therapy. Their recommendation was to provide funding to treat a very small subset of Pompe patients (Infants less one year of age with cardiomyopathy). Genzyme received broad approval in the European Union. On May 26, 2010 FDA approved Lumizyme, a similar version of Myozyme, for the treament of late-onset Pompe disease.
A new treatment option for this disease is called Lumizyme. Lumizyme and Myozyme have the same generic ingredient (Alglucosidase Alfa) and manufacturer (Genzyme Corporation). The difference between these two products is in the manufacturing process. Today, the Myozyme is made using a 160-L bioreactor, while the Lumizyme uses a 4000-L bioreactor. Because of the difference in the manufacturing process, the FDA claims that the two products are biologically different. Moreover, Lumizyme is FDA approved as replacement therapy for late-onset (noninfantile) Pompe disease without evidence of cardiac hypertrophy in patients 8 years and older. Myozyme is FDA approved for replacement therapy for infantile-onset Pompe disease.
Recent studies on chaperone molecules to be used with myozyme are starting to show promising results on animal models.
Treatment is limited. Drugs can alleviate the symptoms, such as sleep difficulties and epilepsy. Physiotherapy helps affected children retain the ability to remain upright for as long as possible, and prevents some of the pain.
Recent attempts to treat INCL with cystagon have been unsuccessful.
There is currently no cure or standard procedure for treatment. A bone marrow transplant has been attempted on a child, but it made no improvement. Hydrocephalus may be seen in younger patients and can be relieved with surgery or by implanting a shunt to relieve pressure.
No cures for lysosomal storage diseases are known, and treatment is mostly symptomatic, although bone marrow transplantation and enzyme replacement therapy (ERT) have been tried with some success. ERT can minimize symptoms and prevent permanent damage to the body. In addition, umbilical cord blood transplantation is being performed at specialized centers for a number of these diseases. In addition, substrate reduction therapy, a method used to decrease the production of storage material, is currently being evaluated for some of these diseases. Furthermore, chaperone therapy, a technique used to stabilize the defective enzymes produced by patients, is being examined for certain of these disorders. The experimental technique of gene therapy may offer cures in the future.
Ambroxol has recently been shown to increase activity of the lysosomal enzyme glucocerebrosidase, so it may be a useful therapeutic agent for both Gaucher disease and Parkinson's disease. Ambroxol triggers the secretion of lysosomes from cells by inducing a pH-dependent calcium release from acidic calcium stores. Hence, relieving the cell from accumulating degradation products is a proposed mechanism by which this drug may help.
Different genetic causes and types of Leigh syndrome have different prognoses, though all are poor. The most severe forms of the disease, caused by a full deficiency in one of the affected proteins, cause death at a few years of age. If the deficiency is not complete, the prognosis is somewhat better and an affected child is expected to survive 6–7 years, and in rare cases, to their teenage years.
The prognosis for individuals with Pompe disease varies according to the onset and severity of symptoms. Without treatment the disease is particularly lethal in infants and young children.
Myozyme (alglucosidase alfa) is a recombinant form of the human enzyme acid alpha-glucosidase, and is also currently being used to replace the missing enzyme. In a study which included the largest cohort of patients with Pompe disease treated with enzyme replacement therapy (ERT) to date findings showed that Myozyme treatment clearly prolongs ventilator-free survival and overall survival in patients with infantile-onset Pompe disease as compared to an untreated historical control population. Furthermore, the study demonstrated that initiation of ERT prior to 6 months of age, which could be facilitated by newborn screening, shows great promise to reduce the mortality and disability associated with this devastating disorder. Taiwan and several states in the United States have started the newborn screening and results of such regimen in early diagnosis and early initiation of the therapy have dramatically improved the outcome of the disease; many of these babies have reached the normal motor developmental milestones.
Another factor affecting the treatment response is generation of antibodies against the infused enzyme, which is particularly severe in Pompe infants who have complete deficiency of the acid alpha-glucosidase. Immune tolerance therapy to eliminate these antibodies has improved the treatment outcome.
A Late Onset Treatment Study (LOTS) was published in 2010. The study was undertaken to evaluate the safety and efficacy of aglucosidase alfa in juvenile and adult patients with Pompe disease. LOTS was a randomized, double-blind, placebo-controlled study that enrolled 90 patients at eight primary sites in the United States and Europe. Participants received either aglucosidase alfa or a placebo every other week for 18 months. The average age of study participants was 44 years. The primary efficacy endpoints of the study sought to determine the effect of Myozyme on functional endurance as measured by the six-minute walk test and to determine the effect of aglucosidase alfa on pulmonary function as measured by percent predicted forced vital capacity.
The results showed that, at 78 weeks, patients treated with aglucosidase alfa increased their distance walked in six minutes by an average of approximately 25 meters as compared with the placebo group which declined by 3 meters (P=0.03). The placebo group did not show any improvement from baseline. The average baseline distance walked in six minutes in both groups was approximately 325 meters.
Percent predicted forced vital capacity in the group of patients treated with aglucosidase alfa increased by 1.2 percent at 78 weeks. In contrast, it declined by approximately 2.2 percent in the placebo group (P=0.006).
As of 2017, data on optimal treatment was limited. Therapies with hormones is the standard of care, namely adrenocorticotrophic hormone (ACTH), or oral
corticosteroids such as prednisone. Vigabatrin is also a common consideration, though there is a risk of visual field loss with long term use. The high cost of ACTH leads doctors to avoid it in the US; higher dose prednisone appears to generate equivalent outcomes.
As of 2017 data from clinical trials of the ketogenic diet for treating infantile spams was inconsistent; most trials were as a second-line therapy after failure of drug treatment, and as of 2017 it had not been explored as a first line treatment in an adequately designed clinical trial.
Standard of care for treatment of CPT II deficiency commonly involves limitations on prolonged strenuous activity and the following dietary stipulations:
- The medium-chain fatty acid triheptanoin appears to be an effective therapy for adult-onset CPT II deficiency.
- Restriction of lipid intake
- Avoidance of fasting situations
- Dietary modifications including replacement of long-chain with medium-chain triglycerides supplemented with L-carnitine
Treatment of Aicardi syndrome primarily involves management of seizures and early/continuing intervention programs for developmental delays.
Additional comorbidities and complications sometimes seen with Aicardi syndrome include porencephalic cysts and hydrocephalus, and gastro-intestinal problems. Treatment for porencephalic cysts and/or hydrocephalus is often via a shunt or endoscopic of the cysts, though some require no treatment. Placement of a feeding tube, fundoplication, and surgeries to correct hernias or other gastrointestinal structural problems are sometimes used to treat gastro-intestinal issues.
The management of this condition can be done via-improvement of any electrolyte imbalance, as well as, hypertension and anemia treatment as the individuals condition warrants.
Infantile Refsum disease (IRD), also called infantile phytanic acid storage disease, is a rare autosomal recessive congenital peroxisomal biogenesis disorder within the Zellweger spectrum. These are disorders of the peroxisomes that are clinically similar to Zellweger syndrome and associated with mutations in the "PEX" family of genes. IRD is associated with deficient phytanic acid catabolism, as is Adult Refsum disease, but they are different disorders that should not be confused.
GM2-gangliosidosis, AB variant is a rare, autosomal recessive metabolic disorder that causes progressive destruction of nerve cells in the brain and spinal cord. It has a similar pathology to Sandhoff disease and Tay-Sachs disease. The three diseases are classified together as the GM2 gangliosidoses, because each disease represents a distinct molecular point of failure in the activation of the same enzyme, beta-hexosaminidase. AB variant is caused by a failure in the gene that makes an enzyme cofactor for beta-hexosaminidase, called the GM2 activator.
The prognosis is generally poor. With early onset, death usually occurs within 10 years from the onset of symptoms. Individuals with the infantile form usually die before the age of 7. Usually, the later the disease occurs, the slower its course is.
There are three types of Sandhoff disease: classic infantile, juvenile, and adult late onset. Each form is classified by the severity of the symptoms as well as the age at which the patient shows these symptoms.
- Classic infantile form of the disease is classified by the development of symptoms anywhere from 2 months to 9 months of age. It is the most severe of all of the forms and will lead to death before the patient reaches the age of three. This is the most common and severe form of Sandhoff disease. Infants with this disorder typically appear normal until the age of 3 to 6 months, when development slows and muscles used for movement weaken. Affected infants lose motor skills such as turning over, sitting, and crawling. As the disease progresses, infants develop seizures, vision and hearing loss, dementia, and paralysis. An eye abnormality called a cherry-red spot, which can be identified with an eye examination, is characteristic of this disorder. Some infants with Sandhoff disease may have enlarged organs (organomegaly) or bone abnormalities. Children with the severe form of this disorder usually live only into early childhood.
- Juvenile form of the disease shows symptoms starting at age 3 ranging to age 10 and, although the child usually dies by the time they are 15, it is possible for them to live longer if they are under constant care. Symptoms include autism, ataxia, motor skills regression, spacticity, and learning disorders.
- Adult onset form of the disease is classified by its occurrence in older individuals and has an effect on the motor function of these individuals. It is not yet known if Sandhoff disease will cause these individuals to have a decrease in their life span.
Juvenile and adult onset forms of Sandhoff disease are very rare. Signs and symptoms can begin in childhood, adolescence, or adulthood and are usually milder than those seen with the infantile form of Sandhoff disease. As in the infantile form, mental abilities and coordination are affected. Characteristic features include muscle weakness, loss of muscle coordination (ataxia) and other problems with movement, speech problems, and mental illness. These signs and symptoms vary widely among people with late-onset forms of Sandhoff disease.
There is evidence to show that steroids given to babies less than 8 days old can prevent bronchopulmonary dysplasia. However, the risks of treatment may outweigh the benefits.
It is unclear if starting steroids more than 7 days after birth is harmful or beneficial. It is thus recommended that they only be used in those who cannot be taken off of a ventilator.
Signs and symptoms of GM2-gangliosidosis, AB variant are identical with those of infantile Tay-Sachs disease, except that enzyme assay testing shows normal levels of hexosaminidase A. Infantile Sandhoff disease has similar symptoms and prognosis, except that there is deficiency of both hexosaminidase A and hexosaminidase B. Infants with this disorder typically appear normal until the age of 3 to 6 months, when development slows and muscles used for movement weaken. Affected infants lose motor skills such as turning over, sitting, and crawling. As the disease progresses, infants develop seizures, vision and hearing loss, mental retardation, and paralysis.
An ophthalmological abnormality called a cherry-red spot, which can be identified with an eye examination, is characteristic of this disorder. This cherry-red spot is the same finding that Warren Tay first reported in 1881, when he identified a case of Tay-Sachs disease, and it has the same etiology.
The prognosis for AB variant is the same as for infantile Tay-Sachs disease. Children with AB variant die in infancy or early childhood.
There is no cure, although curative therapy with bone marrow transplantion is being investigated in clinical trials. It is believed the healthy marrow will provide the sufferer with cells from which osteoclasts will develop. If complications occur in children, patients can be treated with vitamin D. Gamma interferon has also been shown to be effective, and it can be associated to vitamin D. Erythropoetin has been used to treat any associated anemia. Corticosteroids may alleviate both the anemia and stimulate bone resorption. Fractures and osteomyelitis can be treated as usual. Treatment for osteopetrosis depends on the specific symptoms present and the severity in each person. Therefore, treatment options must be evaluated on an individual basis. Nutritional support is important to improve growth and it also enhances responsiveness to other treatment options. A calcium-deficient diet has been beneficial for some affected people.
Treatment is necessary for the infantile form:
- Vitamin D (calcitriol) appears to stimulate dormant osteoclasts, which stimulates bone resorption
- Gamma interferon can have long-term benefits. It improves white blood cell function (leading to fewer infections), decreases bone volume, and increases bone marrow volume.
- Erythropoietin can be used for anemia, and corticosteroids can be used for anemia and to stimulate bone resorption.
Bone marrow transplantation (BMT) improves some cases of severe, infantile osteopetrosis associated with bone marrow failure, and offers the best chance of longer-term survival for individuals with this type.
In pediatric (childhood) osteopetrosis, surgery is sometimes needed because of fractures. Adult osteopetrosis typically does not require treatment, but complications of the condition may require intervention. Surgery may be needed for aesthetic or functional reasons (such as multiple fractures, deformity, and loss of function), or for severe degenerative joint disease.
The long-term-outlook for people with osteopetrosis depends on the subtype and the severity of the condition in each person.The severe infantile forms of osteopetrosis are associated with shortened life expectancy, with most untreated children not surviving past their first decade. seems to have cured some infants with early-onset disease. However, the long-term prognosis after transplantation is unknown. For those with onset in childhood or adolescence, the effect of the condition depends on the specific symptoms (including how fragile the bones are and how much pain is present). Life expectancy in the adult-onset forms is normal.
The prognosis varies widely from case to case, depending on the severity of the symptoms. However, almost all people reported with Aicardi syndrome to date have experienced developmental delay of a significant degree, typically resulting in mild to moderate to profound intellectual disability. The age range of the individuals reported with Aicardi syndrome is from birth to the mid 40s.
There is no cure for this syndrome.
In some cases, signs and symptoms of infantile neuroaxonal dystrophy first appear later in childhood or during the teenage years and progress more slowly.
Children with infantile neuroaxonal dystrophy experience progressive difficulties with movement. Generally they have muscles that are at first weak and "floppy" (hypotonic), and then gradually become very stiff (spastic). Eventually, affected children lose the ability to move independently. Lack of muscle strength causes difficulty with feeding and breathing problems that can lead to frequent infections, such as pneumonia. Seizures occur in some affected children.
Rapid, involuntary eye movements (nystagmus), eyes that do not look in the same direction (strabismus), and vision loss due to deterioration (atrophy) of the optic nerve are characteristic of infantile neuroaxonal dystrophy. Hearing loss may also develop. Children with this disorder experience progressive deterioration of cognitive functions (dementia), and eventually lose awareness of their surroundings.
Infantile neuroaxonal dystrophy is characterized by the development of swellings called spheroid bodies in the axons, the fibers that extend from nerve cells (neurons) and transmit impulses to muscles and other neurons. A part of the brain called the cerebellum, which helps to control movements, may also be damaged. In some individuals with infantile neuroaxonal dystrophy, abnormal amounts of iron accumulate in a specific region of the brain called the basal ganglia.
Infantile neuronal ceroid lipofuscinoses (INCL) or Santavuori disease or Hagberg-Santavuori disease or Santavuori-Haltia disease or Infantile Finnish type neuronal ceroid lipofuscinosis or Balkan disease is a form of NCL and inherited as a recessive autosomal genetic trait. The disorder is progressive, degenerative and fatal, extremely rare worldwide – with approximately 60 official cases reported by 1982, perhaps 100 sufferers in total today – but relatively common in Finland due to the local founder effect.