Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
"N"-Acetylcysteine (NAC) is a precursor to glutathione, an antioxidant. It has been hypothesized that treatment with high doses of NAC may repair an oxidant–antioxidant imbalance that occurs in the lung tissue of patients with IPF. In the first clinical trial of 180 patients (IFIGENIA), NAC was shown in previous study to reduce the decline in VC and DLCO over 12 months of follow-up when used in combination with prednisone and azathioprine (triple therapy).
More recently, a large randomized, controlled trial (PANTHER-IPF) was undertaken by the National Institutes of Health (NIH) in the USA to evaluate triple therapy and NAC monotherapy in IPF patients. This study found that the combination of prednisone, azathioprine, and NAC increased the risk of death and hospitalizations and the NIH announced in 2012 that the triple-therapy arm of the PANTHER-IPF study had been terminated early.
This study also evaluated NAC alone and the results for this arm of the study were published in May 2014 in the New England Journal of Medicine, concluding that "as compared with placebo, acetylcysteine offered no significant benefit with respect to the preservation of FVC in patients with idiopathic pulmonary fibrosis with mild-to-moderate impairment in lung function".
A Cochrane review comparing pirfenidone with placebo, found a reduced risk of disease progression by 30%. FVC or VC was also improved, even if a mild slowing in FVC decline could be demonstrated only in one of the two CAPACITY trials. A third study, which was completed in 2014 found reduced decline in lung function and IPF disease progression. The data from the ASCEND study were also pooled with data from the two CAPACITY studies in a pre-specified analysis which showed that pirfenidone reduced the risk of death by almost 50% over one year of treatment.
Pulmonary fibrosis creates scar tissue. The scarring is permanent once it has developed. Slowing the progression and prevention depends on the underlying cause:
- Treatment options for idiopathic pulmonary fibrosis are very limited. Though research trials are ongoing, there is no evidence that any medications can significantly help this condition. Lung transplantation is the only therapeutic option available in severe cases. Since some types of lung fibrosis can respond to corticosteroids (such as prednisone) and/or other medications that suppress the body's immune system, these types of drugs are sometimes prescribed in an attempt to slow the processes that lead to fibrosis.
- Two pharmacological agents intended to prevent scarring in mild idiopathic fibrosis are pirfenidone, which reduced reductions in the 1-year rate of decline in FVC. Pirfenidone also reduced the decline in distances on the 6-minute walk test, but had no effect on respiratory symptoms. The second agent is nintedanib, which acts as antifibrotic, mediated through the inhibition of a variety of tyrosine kinase receptors (including platelet-derived growth factor, fibroblast growth factor, and vascular endothelial growth factor). A randomized clinical trial showed it reduced lung-function decline and acute exacerbations.
- Anti-inflammatory agents have only limited success in reducing the fibrotic progress. Some of the other types of fibrosis, such as non-specific interstitial pneumonia, may respond to immunosuppressive therapy such as corticosteroids. However, only a minority of patients respond to corticosteroids alone, so additional immunosuppressants, such as cyclophosphamide, azathioprine, methotrexate, penicillamine, and cyclosporine may be used. Colchicine has also been used with limited success. There are ongoing trials with newer drugs such as IFN-γ and mycophenolate mofetil..
- Hypersensitivity pneumonitis, a less severe form of pulmonary fibrosis, is prevented from becoming aggravated by avoiding contact with the causative material.
- Oxygen supplementation improves the quality of life and exercise capacity. Lung transplantation may be considered for some patients.
ILD is not a single disease, but encompasses many different pathological processes. Hence treatment is different for each disease.
If a specific occupational exposure cause is found, the person should avoid that environment. If a drug cause is suspected, that drug should be discontinued.
Many cases due to unknown or connective tissue-based causes are treated with corticosteroids, such as prednisolone. Some people respond to immunosuppressant treatment. Patients with a low level of oxygen in the blood may be given supplemental oxygen.
Pulmonary rehabilitation appears to be useful. Lung transplantation is an option if the ILD progresses despite therapy in appropriately selected patients with no other contraindications.
On October 16, 2014, the Food and Drug Administration approved a new drug for the treatment of Idiopathic Pulmonary Fibrosis (IPF). This drug, Ofev (nintedanib), is marketed by Boehringer Ingelheim Pharmaceuticals, Inc. This drug has been shown to slow the decline of lung function although the drug has not been shown to reduce mortality or improve lung function. The estimated cost of the drug per year is approximately $94,000.
The first advance in the treatment of pulmonary alveolar proteinosis came in November 1960, when Dr. Jose Ramirez-Rivera at the Veterans' Administration Hospital in Baltimore applied repeated "segmental flooding" as a means of physically removing the accumulated alveolar material.
The standard treatment for PAP is whole-lung lavage, in which the lung is filled with sterile fluid with subsequent removal of the fluid along with the abnormal surfactant material. This is generally effective at improving PAP symptoms, often for a prolonged period of time. Since the mouse discovery noted above, the use of GM-CSF injections has also been attempted, with variable success. Lung transplantation can be performed in refractory cases.
Hypoxia caused by pulmonary fibrosis can lead to pulmonary hypertension, which, in turn, can lead to heart failure of the right ventricle. Hypoxia can be prevented with oxygen supplementation.
Pulmonary fibrosis may also result in an increased risk for pulmonary emboli, which can be prevented by anticoagulants.
Sirolimus is an mTOR inhibitor that stabilizes lung function and improves some measures of life in LAM patients. It is approved by the FDA for use in LAM, based on the results of the Multicenter International LAM Efficacy and Safety of Sirolimus (MILES) Trial. MILES data supports the use of sirolimus in patients who have abnormal lung function (i.e. FEV1<70% predicted). Whether the benefits of treatment outweigh the risks for asymptomatic LAM patients with normal lung function is not clear, but some physicians consider treatment for declining patients who are approaching the abnormal range for FEV1. Sirolimus also appears to be effective for the treatment chylous effusions and lymphangioleiomyomatosis. The benefits of sirolimus only persist while treatment continues. The safety of long term therapy has not been studied.
Potential side effects from mTOR inhibitors include swelling in the ankles, acne, oral ulcers, dyspepsia, diarrhea, elevation of cholesterol and triglycerides, hypertension and headache. Sirolimus pneumonitis and latent malignancy are more serious concerns, but occur infrequently. Sirolimus inhibits wound healing. It is important to stop therapy with the drug for 1–2 weeks before and after elective procedures that require optimal wound healing. Precautions must be taken to avoid prolonged sun exposure due to increased skin cancer risk.
Treatment with another mTOR inhibitor, everolimus, was reported in a small, open-label trial to be associated with improvement in FEV1 and six-minute walk distance. Serum levels of VEGF-D and collagen IV were reduced by treatment. Adverse events were generally consistent with those known to be associated with mTOR inhibitors, although some were serious and included peripheral edema, pneumonia, cardiac failure and "Pneumocystis jirovecii" infection. Escalating doses of everolimus were used, up to 10 mg per day; higher than what is typically used clinically for LAM.
Serum VEGF-D concentration is useful, predictive and prognostic biomarker. Higher baseline VEGF-D levels predicts more rapid disease progression and a more robust treatment response.
Hormonal approaches to treatment have never been tested in proper trials. In the absence of proven benefit, therapy with progesterone, GnRh agonists (e.g., Lupron, goserelin) and tamoxifen are not routinely recommended. Doxycycline had no effect on the rate of lung function decline in a double blind trial.
Sirolimus is often effective as first-line management for chylothorax. If chylous leakage or accumulations persist despite treatment, imaging with heavy T2 weighted MRI, MRI lymphangiography or thoracic duct lymphangiography can be considered. Pleural fusion procedures can be considered in refractory cases.
Different treatments have been used to manage pulmonary interstitial emphysema with variable success. Admission/transfer to a neonatal intensive care unit (NICU) is common and expected for patients with PIE.
Treatments include:
- Lateral decubitus position with the affected side down
- High-frequency ventilation
- Lobectomy
- Selective Main Bronchial Intubation and Occlusion
Estrogen-containing medications can exacerbate LAM and are contraindicated. Agents that antagonize the effects of estrogen have not been proven to be effective for treatment, but no proper trials have been done. A trial of bronchodilators should be considered in LAM patients, because up to 17% to 25% have bronchodilator-responsive airflow obstruction. Oxygen should be administered to maintain oxyhemoglobin saturations of greater than 90% with rest, exercise and sleep. Bone densitometry should be considered in all patients who are immobilized and/or on antiestrogen therapies, and appropriate therapy instituted for osteoporotic patients. Proper attention should be paid to cardiovascular health following natural or induced menopause. Immunizations for pneumococcus and influenza should be kept up to date. Pulmonary rehabilitation seems to be particularly rewarding in young, motivated patients with obstructive lung disease, but studies to assess this intervention's effect on exercise tolerance, conditioning and quality of life have not been done.
Treatment is with corticosteroids and possibly intravenous immunoglobulins.
Within all classes of medicinal drugs that possibly can lead to pulmonary toxicity as a side effect, most pulmonary toxicity is due to chemotherapy for cancer.
Many medicinal drugs can lead to pulmonary toxicity. A few medicinal drugs can lead to pulmonary toxicity frequently (in medicine defined by international regulatory authorities such as the U.S. Food and Drug Administration and the EMEA [European Union] as > 1% and 10%). These medicinal drugs can include gold and nitrofurantoin, as well as the following drugs used in chemotherapy for cancer: Methotrexate, the taxanes (paclitaxel and docetaxel), gemcitabine, bleomycin, mitomycin C, busulfan, cyclophosphamide, chlorambucil, and nitrosourea (e.g., carmustine).
Also, some medicinal drugs used in cardiovascular medicine can lead to pulmonary toxicity frequently or very frequently. These include above all amiodarone, as well as beta blockers, ACE inhibitors (however, pulmonary toxicity of ACE inhibitors usually lasts only 3–4 months and then usually disappears by itself), procainamide, quinidine, tocainide, and minoxidil.
Both oncologists and cardiologists are well aware of possible pulmonary toxicity.
Treatment is primarily supportive. Management in an intensive care unit is required and the need for mechanical ventilation is common. Therapy with corticosteroids is generally attempted, though their usefulness has not been established. The only treatment that has met with success to date is a lung transplant.
Radiation (radiotherapy) is frequently used for the treatment of many cancer types, and can be highly effective. Unfortunately, it also can lead to pulmonary toxicity as a side effect.
Radiotherapists are well aware of possible pulmonary toxicity, and take a number of precautions to minimise the incidence of this side effect. There are research efforts to possibly eliminate this side effect in the future.
Pulmonary interstitial emphysema often resolves gradually and may take 2–3 weeks. For longer durations of PIE the length of time of mechanical ventilation needed may increase and the incidence of bronchopulmonary dysplasia becomes higher. Some infants may develop chronic lobar emphysema, which may require surgical lobectomies.
There is no cure available for asbestosis. Oxygen therapy at home is often necessary to relieve the shortness of breath and correct underlying low blood oxygen levels. Supportive treatment of symptoms includes respiratory physiotherapy to remove secretions from the lungs by postural drainage, chest percussion, and vibration. Nebulized medications may be prescribed in order to loosen secretions or treat underlying chronic obstructive pulmonary disease. Immunization against pneumococcal pneumonia and annual influenza vaccination is administered due to increased sensitivity to the diseases. Those with asbestosis are at increased risk for certain cancers. If the person smokes, quitting the habit reduces further damage. Periodic pulmonary function tests, chest x-rays, and clinical evaluations, including cancer screening/evaluations, are given to detect additional hazards.
The course of treatment of fire breather's pneumonia remains controversial. Administration of bronchodilators, corticosteroids, and prophylactic antibiotics to prevent secondary infection, is a common course of treatment. Some studies suggest that steroids may improve outcomes in severely affected individuals, yet these data are only based on a limited number of patients. The use of gastric decontamination to prevent subsequent pulmonary injury from hydrocarbon ingestion is controversial. It may have potential benefit in large (> 30 cc), intentional ingestion of compounds with systemic toxicity.
Prognosis after peak symptoms is typically good, with most patients making a full recovery in weeks to months.
Patients presenting with no symptoms, and not affected by the syndrome may not require treatment. Corticosteroids have been reported to be of benefit in select patients. Bronchodilators may assist with breathing issues and resolution may occur with the use of Highly Active Anti-Retroviral Therapy. However, responses to different treatments are widely varied, and no single first line treatment represents the default treatment for lymphocytic interstitial pneumonia.
General treatment principles are removal from exposure, protection of the airway (i.e., preemptive intubation), and treatment of hypoxemia. Concomitant airway injury with acute bronchospasm often warrants treatment with bronchodilators because of the airway obstruction.
A beneficial role for corticosteroids has not been established by controlled trials in humans. Despite the lack of controlled evidence of efficacy, anecdotal reports of benefits from systemic corticosteroid use continue to appear.
Prophylactic antibiotic drugs have not proved to be efficacious in toxic lung injury. Antibiotics should be reserved for those patients with clinical evidence of infection.
Flock worker's lung can be prevented with engineering controls that protect workers from inhaling flock. Engineering controls to prevent inhalation of flock can include using guillotine cutters rather than rotary cutters, and ensuring that blades are sharp, since dull blades shear off more respirable particles. Flocking plants have also implemented medical surveillance programs for workers to diagnose cases at an earlier stage. Another technique for preventing flock worker's lung is cleaning the workplace with alternatives to compressed air in order to avoid resuspending particulates in the air.
Flock worker's lung is generally treated by removing the individual from the environment where they are inhaling flock. Symptoms generally improve within days to weeks after stopping exposure. The benefits of glucocorticoid therapy are unclear.
Flock worker's lung may raise the risk for lung cancer, but the connection is a topic of research as of 2015. The disease can be subacute or develop over long periods of exposure.
The following are precautionary measures that can be taken to avoid the spread of bagassosis:
1. Dust control-prevention /suppression of dust such as wet process, enclosed apparatus, exhaust ventilation etc. should be used
2. Personal protection- masks/ respirators
3. Medical control- initial medical examination & periodical checkups of workers
4. Bagasse control- keep moisture content above 20% and spray bagasse with 2% propionic acid
PAP patients, families, and caregivers are encouraged to join the NIH Rare Lung Diseases Consortium Contact Registry. This is a privacy protected site that provides up-to-date information for individuals interested in the latest scientific news, trials, and treatments related to rare lung diseases.
Regardless of cause, UIP is relentlessly progressive, usually leading to respiratory failure and death without a lung transplant. Some patients do well for a prolonged period of time, but then deteriorate rapidly because of a superimposed acute illness (so-called "accelerated UIP"). The outlook for long-term survival is poor. In most studies, the median survival is 3 to 4 years. Patients with UIP in the setting of rheumatoid arthritis have a slightly better prognosis than UIP without a known cause (IPF).
The antihistamine hydroxyzine failed to demonstrate superiority over placebo in treatment of IC patients in a randomized, controlled, clinical trial.
Amitriptyline has been shown to be effective in reducing symptoms such as chronic pelvic pain and nocturia in many patients with IC/BPS with a median dose of 75 mg daily. In one study, the antidepressant duloxetine was found to be ineffective as a treatment, although a patent exists for use of duloxetine in the context of IC, and is known to relieve neuropathic pain. The calcineurin inhibitor cyclosporine A has been studied as a treatment for interstitial cystitis due to its immunosuppressive properties. A prospective randomized study found cyclosporine A to be more effective at treating IC symptoms than pentosan polysulfate, but also had more adverse effects.
Oral pentosan polysulfate is believed to repair the protective glycosaminoglycan coating of the bladder, but studies have encountered mixed results when attempting to determine if the effect is statistically significant compared to placebo.
Diet modification is often recommended as a first-line method of self-treatment for interstitial cystitis, though rigorous controlled studies examining the impact diet has on interstitial cystitis signs and symptoms are currently lacking. Individuals with interstitial cystitis often experience an increase in symptoms when they consume certain foods and beverages. Avoidance of these potential trigger foods and beverages such as caffeine-containing beverages including coffee, tea, and soda, alcoholic beverages, chocolate, citrus fruits, hot peppers, and artificial sweeteners may be helpful in alleviating symptoms. Diet triggers vary between individuals with IC; the best way for a person to discover his or her own triggers is to use an elimination diet. Sensitivity to trigger foods may be reduced if calcium glycerophosphate and/or sodium bicarbonate is consumed. The foundation of therapy is a modification of diet to help patients avoid those foods which can further irritate the damaged bladder wall.
The mechanism by which dietary modification benefits people with IC is unclear. Integration of neural signals from pelvic organs may mediate the effects of diet on symptoms of IC.