Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There are many classes of antiarrhythmic medications, with different mechanisms of action and many different individual drugs within these classes. Although the goal of drug therapy is to prevent arrhythmia, nearly every anti arrhythmic drug has the potential to act as a pro-arrhythmic, and so must be carefully selected and used under medical supervision.
A number of other drugs can be useful in cardiac arrhythmias.
Several groups of drugs slow conduction through the heart, without actually preventing an arrhythmia. These drugs can be used to "rate control" a fast rhythm and make it physically tolerable for the patient.
Some arrhythmias promote blood clotting within the heart, and increase risk of embolus and stroke. Anticoagulant medications such as warfarin and heparins, and anti-platelet drugs such as aspirin can reduce the risk of clotting.
For those who are stable with a monomorphic waveform the medications procainamide or sotalol may be used and are better than lidocaine. Evidence does not show that amiodarone is better than procainamide.
As a low magnesium level in the blood is a common cause of VT, magnesium sulfate can be given for torsades de pointes or if a low blood magnesium level is found/suspected.
Long-term anti-arrhythmic therapy may be indicated to prevent recurrence of VT. Beta-blockers and a number of class III anti-arrhythmics are commonly used, such as the beta-blockers carvedilol, metoprolol, and bisoprolol, and the Potassium-Channel-Blockers amiodarone, dronedarone,bretylium, sotalol, ibutilide, and dofetilide. Angiotensin-converting-eynsyme (ACE) inhibitors and aldostrone antatagonists are also sometimes used in this setting.
A person with pulseless VT is treated the same as ventricular fibrillation with high-energy (360J with a monophasic defibrillator, or 200J with a biphasic defibrillator) unsynchronised cardioversion (defibrillation). They will be unconscious.
The shock may be delivered to the outside of the chest using the two pads of an external defibrillator, or internally to the heart by an implantable cardioverter-defibrillator (ICD) if one has previously been inserted.
An ICD may also be set to attempt to overdrive pace the ventricle. Pacing the ventricle at a rate faster than the underlying tachycardia can sometimes be effective in terminating the rhythm. If this fails after a short trial, the ICD will usually stop pacing, charge up and deliver a defibrillation grade shock.
Rate control to a target heart rate of less than 110 beats per minute is recommended in most people. Lower heart rates may be recommended in those with left ventricular hypertrophy or reduced left ventricular function. Rate control is achieved with medications that work by increasing the degree of block at the level of the AV node, decreasing the number of impulses that conduct into the ventricles. This can be done with:
- Beta blockers (preferably the "cardioselective" beta blockers such as metoprolol, bisoprolol, or nebivolol)
- Non-dihydropyridine calcium channel blockers (e.g., diltiazem or verapamil)
- Cardiac glycosides (e.g., digoxin) – have less use, apart from in older people who are sedentary. They are not as effective as either beta blockers or calcium channel blockers.
In those with chronic disease either beta blockers or calcium channel blockers are recommended.
In addition to these agents, amiodarone has some AV node blocking effects (in particular when administered intravenously), and can be used in individuals when other agents are contraindicated or ineffective (particularly due to hypotension).
Not required for physiologic sinus tachycardia. Underlying causes are treated if present.
Acute myocardial infarction. Sinus tachycardia can present in more than a third of the patients with AMI but this usually decreases over time. Patients with sustained sinus tachycardia reflects a larger infarct that are more anterior with prominent left ventricular dysfunction, associated with high mortality and morbidity. Tachycardia in the presence of AMI can reduce coronary blood flow and increase myocardial oxygen demand, aggravating the situation. Beta blockers can be used to slow the rate, but most patients are usually already treated with beta blockers as a routine regimen for AMI.
Practically, many studies showed that there is no need for any treatment.
IST and POTS. Beta blockers are useful if the cause is sympathetic overactivity. If the cause is due to decreased vagal activity, it is usually hard to treat and one may consider radiofrequency catheter ablation.
There are two ways to approach atrial fibrillation using medications: rate control and rhythm control. Both methods have similar outcomes. "Rate control" lowers the heart rate closer to normal, usually 60 to 100 bpm, without trying to convert to a regular rhythm. "Rhythm control" tries to restore a normal heart rhythm in a process called cardioversion and maintains the normal rhythm with medications. Studies suggest that rhythm control is more important in the acute setting AF, whereas rate control is more important in the chronic phase.
The risk of stroke appears to be lower with rate control versus attempted rhythm control, at least in those with heart failure. AF is associated with a reduced quality of life, and, while some studies indicate that rhythm control leads to a higher quality of life, some did not find a difference.
Neither rate nor rhythm control is superior in people with heart failure when they are compared in various clinical trials. However, rate control is recommended as the first line treatment regimen for heart failure patients. On the other hand, rhythm control is only recommended when patients experience persistent symptoms despite adequate rate control therapy.
In those with a fast ventricular response, intravenous magnesium significantly increases the chances of successful rate and rhythm control in the urgent setting without major side-effects. A person with poor vital signs, mental status changes, preexcitation, or chest pain often will go to immediate treatment with synchronized DC cardioversion. Otherwise the decision of rate control versus rhythm control using drugs is made. This is based on a number of criteria that includes whether or not symptoms persist with rate control.
In general, atrial flutter should be managed the same as atrial fibrillation. Because both rhythms can lead to the formation of a blood clot in the atrium, individuals with atrial flutter usually require some form of anticoagulation or antiplatelet agent. Both rhythms can be associated with dangerously fast heart rates and thus require medication to control the heart rate (such as beta blockers or calcium channel blockers) and/or rhythm control with class III antiarrhythmics (such as ibutilide or dofetilide). However, atrial flutter is more resistant to correction with such medications than atrial fibrillation. For example, although the class III antiarrhythmic agent ibutilide is an effective treatment for atrial flutter, rates of recurrence after treatment are quite high (70-90%). Additionally, there are some specific considerations particular to treatment of atrial flutter.
Most SVTs are unpleasant rather than life-threatening, although very fast heart rates can be problematic for those with underlying ischemic heart disease or the elderly. Episodes require treatment when they occur, but interval therapy may also be used to prevent or reduce recurrence. While some treatment modalities can be applied to all SVTs, there are specific therapies available to treat some sub-types. Effective treatment consequently requires knowledge of how and where the arrhythmia is initiated and its mode of spread.
SVTs can be classified by whether the AV node is involved in maintaining the rhythm. If so, slowing conduction through the AV node will terminate it. If not, AV nodal blocking maneuvers will not work, although transient AV block is still useful as it may unmask an underlying abnormal rhythm.
Once an acute arrhythmia has been terminated, ongoing treatment may be indicated to prevent recurrence. However, those that have an isolated episode, or infrequent and minimally symptomatic episodes, usually do not warrant any treatment other than observation.
In general, patients with more frequent or disabling symptoms warrant some form of prevention. A variety of drugs including simple AV nodal blocking agents such as beta-blockers and verapamil, as well as anti-arrhythmics may be used, usually with good effect, although the risks of these therapies need to be weighed against potential benefits.
Radiofrequency ablation has revolutionized the treatment of tachycardia caused by a re-entrant pathway. This is a low-risk procedure that uses a catheter inside the heart to deliver radio frequency energy to locate and destroy the abnormal electrical pathways. Ablation has been shown to be highly effective: around 90% in the case of AVNRT. Similar high rates of success are achieved with AVRT and typical atrial flutter.
Cryoablation is a newer treatment for SVT involving the AV node directly. SVT involving the AV node is often a contraindication for using radiofrequency ablation due to the small (1%) incidence of injuring the AV node, requiring a permanent pacemaker. Cryoablation uses a catheter supercooled by nitrous oxide gas freezing the tissue to −10 °C. This provides the same result as radiofrequency ablation but does not carry the same risk. If you freeze the tissue and then realize you are in a dangerous spot, you can halt freezing the tissue and allow the tissue to spontaneously rewarm and the tissue is the same as if you never touched it. If after freezing the tissue to −10 °C you get the desired result, then you freeze the tissue down to a temperature of −73 °C and you permanently ablate the tissue.
This therapy has further improved the treatment options for people with AVNRT (and other SVTs with pathways close to the AV node), widening the application of curative ablation to young patients with relatively mild but still troublesome symptoms who would not have accepted the risk of requiring a pacemaker.
Atrial flutter is considerably more sensitive to electrical direct current cardioversion than atrial fibrillation, with a shock of only (20 to 50) J commonly being enough to cause a return to a normal heart rhythm (sinus rhythm). Exact placement of the pads does not appear important.
Isolated PVCs with benign characteristics require no treatment.
In healthy individuals, PVCs can often be resolved by restoring the balance of magnesium, calcium and potassium within the body. In one randomized controlled trial with 60 people those with 260 mg magnesium daily supplementation (in magnesium pidolate) had an average reduction of PVC by 77%. In another trial with 232 persons with frequent ventricular arrhythmias (> 720 PVC/24 h) those with 6 mmol of magnesium (146 mg Mg)/12 mmol of potassium-DL-hydrogenaspartate daily supplementation had median reduction of PVCs by 17%.
The most effective treatment is the elimination of triggers (particularly stopping the use of substances such as caffeine and certain drugs, like tobacco).
- Medications
- Antiarrhythmics: these agents alter the electrophysiologic mechanisms responsible for PVCs. In CAST study of survivors of myocardial infarction encainide and flecainide, although could suppress PVC, they increased death risk; moricizine increased death rate when used with diuretics and decreased it when used alone.
- Beta blockers
- Calcium channel blockers
- Electrolytes replacement
- Magnesium supplements (e.g. magnesium citrate, orotate, Maalox, etc.)
- Potassium supplements (e.g. chloride potassium with citrate ion)
- Radiofrequency catheter ablation treatment. It is advised for people with ventricular dysfunction and frequent arrhythmias or very frequent PVC (>20% in 24 h) and normal ventricular function. This procedure is a way to destroy the area of the heart tissue that is causing the irregular contractions characteristic of PVCs using radio frequency energy.
- Implantable cardioverter-defibrillator
- Lifestyle modification
- Frequently stressed individuals should consider therapy, or joining a support group.
- Heart attacks can increase the likelihood of having PVCs.
In the setting of existing heart disease, however, PVCs must be watched carefully, as they may cause a form of ventricular tachycardia (rapid heartbeat).
The American College of Cardiology and the American Heart Association recommend evaluation for coronary artery disease (CAD) in patients who have frequent PVCs and cardiac risk factors, such as hypertension and smoking (SOR C). Evaluation for CAD may include stress testing, echocardiography, and ambulatory rhythm monitoring.
In those that are unstable with a narrow complex tachycardia, intravenous adenosine may be attempted. In all others immediate cardioversion is recommended.
Depending on the type of cardiogenic shock, treatment involves infusion of fluids, or in shock refractory to fluids, inotropic medications. In case of an abnormal heart rhythm several anti-arrhythmic agents may be administered, e.g. adenosine.
Positive inotropic agents (such as dobutamine or milrinone), which enhance the heart's pumping capabilities, are used to improve the contractility and correct the low blood pressure. Should that not suffice an intra-aortic balloon pump (which reduces workload for the heart, and improves perfusion of the coronary arteries) or a left ventricular assist device (which augments the pump-function of the heart) can be considered. Finally, as a last resort, if the person is stable enough and otherwise qualifies, heart transplantation, or if not eligible an artificial heart, can be placed. These invasive measures are important tools- more than 50% of patients who do not die immediately due to cardiac arrest from a lethal abnormal heart rhythm and live to reach the hospital (who have usually suffered a severe acute myocardial infarction, which in itself still has a relatively high mortality rate), die within the first 24 hours. The mortality rate for those still living at time of admission who suffer complications (among others, cardiac arrest or further abnormal heart rhythms, heart failure, cardiac tamponade, a ruptured or dissecting aneurysm, or another heart attack) from cardiogenic shock is even worse around 85%, especially without drastic measures such as ventricular assist devices or transplantation.
Cardiogenic shock may be treated with intravenous dobutamine, which acts on β receptors of the heart leading to increased contractility and heart rate.
Treatment of TIC involves treating both the tachyarrhythmia and the heart failure with the goal of adequate rate control or restoration of the normal heart rhythm (aka. normal sinus rhythm) to reverse the cardiomyopathy. The treatment of the tachyarrhythmia depends on the specific arrhythmia, but possible treatment modalities include rate control, rhythm control with antiarrhythmic agents and cardioversion, radiofrequency (RF) catheter ablation, or AV node ablation with permanent pacemaker implantation.
For TIC due to atrial fibrillation, rate control, rhythm control, and RF catheter ablation can be effective to control the tachyarrhythmia and improve left ventricular systolic function. For TIC due to atrial flutter, rate control is often difficult to achieve, and RF catheter ablation has a relatively high success rate with a low risk of complications. In patients with TIC due to other types of SVT, RF catheter ablation is recommended as a first-line treatment. In patients with TIC due to VT or PVCs, both antiarrhythmics and RF catheter ablation can be used. However, the options for antiarrhythmic agents are limited because certain agents can be proarrhythmic in the setting of myocardial dysfunction in TIC. Therefore, RF catheter ablation is often a safe and effective choice for treatment VT and PVCs causing TIC. In cases where other treatment strategies fail, AV node ablation with permanent pacemaker implantation can also be used to treat the tachyarrhythmia.
The treatment of heart failure commonly involves neurohormonal blockade with beta-blockers and angiotensin convertase inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs) along with symptomatic management with diuretics. Beta-blockers and ACE inhibitors can inhibit and potentially reverse the negative cardiac remodeling, which refers to structural changes in the heart, that occurs in TIC. However, the need to continue these agents after treatment of the tacharrhythmia and resolution of left ventricular systolic dysfunction remains controversial.
The prognosis for TIC after treatment of the underlying tachyarrhythmia is generally good. Studies show that left ventricular function often improves within 1 month of treatment of the tachyarrhythmia, and normalization of the left ventricular ejection fraction occurs in the majority of patients by 3 to 4 months. In some patients however, recovery of this function can take greater than 1 year or be incomplete. In addition, despite improvement in the left ventricular ejection fraction, studies have demonstrated that patients with prior TIC continue to demonstrate signs of negative cardiac remodeling including increased left ventricular end-systolic dimension, end-systolic volume, and end-diastolic volume. Additionally, recurrence of the tachyarrhythmia in patients with a history of TIC has been associated with a rapid decline in left ventricular ejection fraction and more severe cardiomyopathy that their prior presentation, which may be a result of the negative cardiac remodeling. There have also been cases of sudden death in patients with a history of TIC, which may be associated with worse baseline left ventricular dysfunction. Given these risks, routine monitoring with clinic visits, ECG, and echocardiography is recommended.
AV reentrant tachycardia (AVRT) requires an accessory pathway for its maintenance. AVRT may involve orthodromic conduction (where the impulse travels down the AV node to the ventricles and back up to the atria through the accessory pathway) or antidromic conduction (which the impulse travels down the accessory pathway and back up to the atria through the AV node). Orthodromic conduction usually results in a narrow complex tachycardia, and antidromic conduction usually results in a wide complex tachycardia that often mimics ventricular tachycardia. Most antiarrhythmics are contraindicated in the emergency treatment of AVRT, because they may paradoxically increase conduction across the accessory pathway.
First-line therapy for people with heart failure due to reduced systolic function should include angiotensin-converting enzyme (ACE) inhibitors (ACE-I) or angiotensin receptor blockers (ARBs) if the person develops a long term cough as a side effect of the ACE-I. Use of medicines from this class is associated with improved survival and quality of life in people with heart failure.
Beta-adrenergic blocking agents (beta blockers) also form part of the first line of treatment, adding to the improvement in symptoms and mortality provided by ACE-I/ARB. The mortality benefits of beta blockers in people with systolic dysfunction who also have atrial fibrillation (AF) is more limited than in those who do not have AF. If the ejection fraction is not diminished (HFpEF), the benefits of beta blockers are more modest; a decrease in mortality has been observed but reduction in hospital admission for uncontrolled symptoms has not been observed.
In people who are intolerant of ACE-I and ARBs or who have significant kidney dysfunction, the use of combined hydralazine and a long-acting nitrate, such as isosorbide dinitrate, is an effective alternate strategy. This regimen has been shown to reduce mortality in people with moderate heart failure. It is especially beneficial in African-Americans (AA). In AAs who are symptomatic, hydralazine and isosorbide dinitrate (H+I) can be added to ACE-I or ARBs.
In people with markedly reduced ejection fraction, the use of an aldosterone antagonist, in addition to beta blockers and ACE-I, can improve symptoms and reduce mortality.
Second-line medications for CHF do not confer a mortality benefit. Digoxin is one such medication. Its narrow therapeutic window, a high degree of toxicity, and the failure of multiple trials to show a mortality benefit have reduced its role in clinical practice. It is now used in only a small number of people with refractory symptoms, who are in atrial fibrillation and/or who have chronic low blood pressure.
Diuretics have been a mainstay of treatment for treatment of fluid accumulation, and include diuretics classes such as loop diuretics, thiazide-like diuretic, and potassium-sparing diuretic. Although widely used, evidence on their efficacy and safety is limited, with the exception of mineralocorticoid antagonists such as spironolactone. Mineralocorticoid antagonists in those under 75 years old appear to decrease the risk of death. A recent Cochrane review found that in small studies, the use of diuretics appeared to have improved mortality in individuals with heart failure. However, the extent to which these results can be extrapolated to a general population is unclear due to the small number of participants in the cited studies.
Anemia is an independent factor in mortality in people with chronic heart failure. The treatment of anemia significantly improves quality of life for those with heart failure, often with a reduction in severity of the NYHA classification, and also improves mortality rates. The latest European guidelines (2012) recommend screening for iron-deficient anemia and treating with parenteral iron if anemia is found.
The decision to anticoagulate people with HF, typically with left ventricular ejection fractions <35% is debated, but generally, people with coexisting atrial fibrillation, a prior embolic event, or conditions which increase the risk of an embolic event such as amyloidosis, left ventricular noncompaction, familial dilated cardiomyopathy, or a thromboembolic event in a first-degree relative.
As previously stated, management of HFpEF is primarily dependent on the treatment of symptoms and exacerbating conditions. Currently treatment with ACE inhibitors, calcium channel blockers, beta blockers, and angiotensin receptor blockers are employed but do not have a proven benefit in HFpEF patients. Additionally, use of Diuretics or other therapies that can alter loading conditions or blood pressure should be used with caution. It is not recommended that patients be treated with phosphodiesterase-5-inhibitors or digoxin.
Antimineralocorticoid is currently recommended for patients with HFpEF who show elevated brain natriuretic peptide levels. Spironolactone is the first member of this drug class and the most frequently employed. Care should be taken to monitor serum potassium levels as well as kidney function, specifically glomerular filtration rate during treatment.
Beta blockers play a rather obscure role in HFpEF treatment but appear to play a beneficial role in patient management. There is currently a deficit of clinical evidence to support a particular benefit for HFpEF patients, with most evidence resulting from HFpEF patients' inclusion in broader heart failure trials. However, some evidence suggests that vasodilating beta blockers, such as nebivolol, can provide a benefit for patients with heart failure regardless of ejection fraction. Additionally, because of the chronotropic perturbation and diminished LV filling seen in HFpEF the bradycardic effect of beta blockers may enable improved filling, reduced myocardial oxygen demand and lowered blood pressure. However, this effect also can contribute to diminished response to exercise demands and can result in an excessive reduction in heart rate.
ACE inhibitors do not appear to improve morbidity or mortality associated with HFpEF alone. However, they are important in the management of hypertension, a significant player in the pathophysiology of HFpEF.
Angiotensin II receptor blocker treatment shows an improvement in diastolic dysfunction and hypertension that is comparable to other anti-hypertensive medication.
In acute decompensated heart failure (ADHF), the immediate goal is to re-establish adequate perfusion and oxygen delivery to end organs. This entails ensuring that airway, breathing, and circulation are adequate. Immediate treatments usually involve some combination of vasodilators such as nitroglycerin, diuretics such as furosemide, and possibly noninvasive positive pressure ventilation (NIPPV).
Medium-term (and less well-demonstrated) treatments of hypotension include:
- Blood sugar control (80–150 by one study)
- Early nutrition (by mouth or by tube to prevent ileus)
- Steroid support
Despite increasing incidence of HFpEF effective inroads to therapeutics have been largely unsuccessful. Currently, recommendations for treatment are directed at symptom relief and co-morbid conditions. Frequently this involves administration of diuretics to relieve complications associated with volume overload, such as leg swelling and high blood pressure.
Commonly encountered conditions that must be treated for and have independent recommendations for standard of care include atrial fibrillation, coronary artery disease, hypertension, and hyperlipidemia. There are particular factors unique to HFpEF that must be accounted for with therapy. Unfortunately, currently available randomized clinical trials addressing the therapeutic adventure for these conditions in HFpEF present conflicting or limited evidence.
Specific aspects of therapeutics should be avoided in HFpEF to prevent the deterioration of the condition. Considerations that are generalizable to heart failure include avoidance of a fast heart rate, elevations in blood pressure, development of ischemia, and atrial fibrillation. More specific to HFpEF include avoidance of preload reduction. As patients display normal ejection fraction but reduced cardiac output they are especially sensitive to changes in preloading and may rapidly display signs of output failure. This means administration of diuretics and vasodilators must be monitored carefully.
HFrEF and HFpEF represent distinct entities in terms of development and effective therapeutic management. Specifically cardiac resynchronization, administration of beta blockers and angiotensin converting enzyme inhibitors are applied to good effect in HFrEF but are largely ineffective at reducing morbidity and mortality in HFpEF. Many of these therapies are effective in reducing the extent of cardiac dilation and increasing ejection fraction in HFrEF patients. It is unsurprising they fail to effect improvement in HFpEF patients, given their un-dilated phenotype and relative normal ejection fraction. Understanding and targeting mechanisms unique to HFpEF are thus essential to the development of therapeutics.
Randomized studies on HFpEF patients have shown that exercise improves left ventricular diastolic function, the heart's ability to relax, and is associated with improved aerobic exercise capacity. The benefit patients seem to derive from exercise does not seem to be a direct cardiac effect but rather is due to changes in peripheral vasculature and skeletal muscle, which show abnormalities in HFpEF patients.
Patients should be regularly assessed to determine progression of the condition, response to interventions, and need for alteration of therapy. Ability to perform daily tasks, hemodynamic status, kidney function, electrolyte balance, and serum natriuretic peptide levels are important parameters. Behavioral management is important in these patients and it is recommended that individuals with HFpEF avoid alcohol, smoking, and high sodium intake.
Generally, diastolic dysfunction is a chronic process. When this chronic condition is well tolerated by an individual, no specific treatment may be indicated. Rather, therapy should be directed at the root cause of the stiff left ventricle, with potential causes and aggravating factors like high blood pressure and diabetes treated appropriately. Conversely (as noted above), diastolic dysfunction tends to be better tolerated if the atrium is able to pump blood into the ventricles in a coordinated fashion. This does not occur in atrial fibrillation (AF), where there is no coordinated atrial activity and the left ventricle loses around 20% of its output. However, in chronic AF and in geriatric patients, AF is better tolerated and the cardiologist must choose between a stable AF at a lower rate and the risk of having an intermittent AF if he pretends to treat AF aggressively with all the thrombo-embolic risk it implies. In the same light, and also as noted above, if the atrial fibrillation persists and is resulting in a rapid heart rate, treatment must be given to slow down that rate. Usually digoxin maintains a stable rhythm. The use of a self-expanding device that attaches to the external surface of the left ventricle has been suggested, yet still awaits FDA approval. When the heart muscle squeezes, energy is loaded into the device, which absorbs the energy and releases it to the left ventricle in the diastolic phase. This helps retain muscle elasticity.
The role of specific treatments for diastolic dysfunction "per se" is as yet unclear. Diuretics can be useful, if these patients develop significant congestion, but patients must be monitored because they frequently develop hypotension.
Beta-blockers are the first-line therapy as they induce bradycardia and give time for ventricles to fill. There is some evidence that calcium channel blocker drugs may be of benefit in reducing ventricular stiffness in some cases (verapamil has the benefit lowering the heart rate). Likewise, treatment with angiotensin converting enzyme inhibitors, such as enalapril, ramipril, and many others, may be of benefit due to their effect on preventing ventricular remodeling but under control to avoid hypotension.
The treatment for hypotension depends on its cause. Chronic hypotension rarely exists as more than a symptom. Asymptomatic hypotension in healthy people usually does not require treatment. Adding electrolytes to a diet can relieve symptoms of mild hypotension. A morning dose of caffeine can also be effective. In mild cases, where the patient is still responsive, laying the person in dorsal decubitus (lying on the back) position and lifting the legs increases venous return, thus making more blood available to critical organs in the chest and head. The Trendelenburg position, though used historically, is no longer recommended.
Hypotensive shock treatment always follows the first four following steps. Outcomes, in terms of mortality, are directly linked to the speed that hypotension is corrected. Still-debated methods are in parentheses, as are benchmarks for evaluating progress in correcting hypotension. A study on septic shock provided the delineation of these general principles. However, since it focuses on hypotension due to infection, it is not applicable to all forms of severe hypotension.
1. Volume resuscitation (usually with crystalloid)
2. Blood pressure support with a vasopressor (all seem equivalent with respect to risk of death, with norepinephrine possibly better than dopamine). Trying to achieve a mean arterial pressure (MAP) of greater than 70 mmHg does not appear to result in better outcomes than trying to achieve a MAP of greater than 65 mm Hg in adults.
3. Ensure adequate tissue perfusion (maintain SvO2 >70 with use of blood or dobutamine)
4. Address the underlying problem (i.e., antibiotic for infection, stent or CABG (coronary artery bypass graft surgery) for infarction, steroids for adrenal insufficiency, etc...)
The best way to determine if a person will benefit from fluids is by doing a passive leg raise followed by measuring the output from the heart.
The tumor must be surgically removed. Some patients will also need their mitral valve replaced. This can be done during the same surgery.
Myxomas may come back if surgery did not remove all of the tumor cells.