Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
No treatment is necessary for a diagnosis of complete miscarriage (so long as ectopic pregnancy is ruled out). In cases of an incomplete miscarriage, empty sac, or missed abortion there are three treatment options: watchful waiting, medical management, and surgical treatment. With no treatment (watchful waiting), most miscarriages (65–80%) will pass naturally within two to six weeks. This treatment avoids the possible side effects and complications of medications and surgery, but increases the risk of mild bleeding, need for unplanned surgical treatment, and incomplete miscarriage. Medical treatment usually consists of using misoprostol (a prostaglandin) to contract the uterus, expelling remaining tissue out of the cervix. This works within a few days in 95% of cases. Vacuum aspiration or sharp curettage can be used, though vacuum aspiration is lower-risk and more common.
Women who miscarry early in their pregnancy usually do not require any subsequent medical treatment but they can benefit from support and counseling. Most early miscarriages will complete on their own; in other cases, medication treatment or aspiration of the products of conception can be used to remove remaining tissue. While bed rest has been advocated to prevent miscarriage, this has not been found to be of benefit. Those who are or who have experienced an abortion benefit from the use of careful medical language. Significant distress can often be managed by the ability of the clinician to clearly explain terms without suggesting that the woman or couple are somehow to blame.
Evidence to support Rho(D) immune globulin after a spontaneous miscarriage is unclear. In the UK, Rho(D) immune globulin is recommended in Rh-negative women after 12 weeks gestational age and before 12 weeks gestational age in those who need surgery or medication to complete the miscarriage.
Treatment may be delivery by caesarean section and abdominal hysterectomy if placenta accreta is diagnosed before birth. Oxytocin and antibiotics are used for post-surgical management. When there is partially separated placenta with focal accreta, best option is removal of placenta. If it is important to save the woman's uterus (for future pregnancies) then resection around the placenta may be successful. Conservative treatment can also be uterus sparing but may not be as successful and has a higher risk of complications.
Techniques include:
- Leaving the placenta in the uterus and curettage of uterus. Methotrexate has been used in this case.
- Intrauterine balloon catheterisation to compress blood vessels
- Embolisation of pelvic vessels
- Internal iliac artery ligation
- Bilateral uterine artery ligation
In cases where there is invasion of placental tissue and blood vessels into the bladder, it is treated in similar manner to abdominal pregnancy and manual placental removal is avoided. However, this may eventually need hysterectomy and/or partial cystectomy.
If the patient decides to proceed with a vaginal delivery, blood products for transfusion and an anesthesiologist are kept ready at delivery.
In places lacking the necessary medical skill for dilation and extraction, or where preferred by practitioners, an abortion can be induced by first inducing labor and then inducing fetal demise if necessary. This is sometimes called "induced miscarriage". This procedure may be performed from 13 weeks gestation to the third trimester. Although it is very uncommon in the United States, more than 80% of induced abortions throughout the second trimester are labor induced abortions in Sweden and other nearby countries.
Only limited data are available comparing this method with dilation and extraction. Unlike D&E, labor induced abortions after 18 weeks may be complicated by the occurrence of brief fetal survival, which may be legally characterized as live birth. For this reason, labor induced abortion is legally risky in the U.S.
Medical abortions are those induced by abortifacient pharmaceuticals. Medical abortion became an alternative method of abortion with the availability of prostaglandin analogs in the 1970s and the antiprogestogen mifepristone (also known as RU-486) in the 1980s.
The most common early first-trimester medical abortion regimens use mifepristone in combination with a prostaglandin analog (misoprostol or gemeprost) up to 9 weeks gestational age, methotrexate in combination with a prostaglandin analog up to 7 weeks gestation, or a prostaglandin analog alone. Mifepristone–misoprostol combination regimens work faster and are more effective at later gestational ages than methotrexate–misoprostol combination regimens, and combination regimens are more effective than misoprostol alone. This regime is effective in the second trimester. Medical abortion regiments involving mifepristone followed by misoprostol in the cheek between 24 and 48 hours later are effective when performed before 63 days' gestation.
In very early abortions, up to 7 weeks gestation, medical abortion using a mifepristone–misoprostol combination regimen is considered to be more effective than surgical abortion (vacuum aspiration), especially when clinical practice does not include detailed inspection of aspirated tissue. Early medical abortion regimens using mifepristone, followed 24–48 hours later by buccal or vaginal misoprostol are 98% effective up to 9 weeks gestational age. If medical abortion fails, surgical abortion must be used to complete the procedure.
Early medical abortions account for the majority of abortions before 9 weeks gestation in Britain, France, Switzerland, and the Nordic countries. In the United States, the percentage of early medical abortions is far lower.
Medical abortion regimens using mifepristone in combination with a prostaglandin analog are the most common methods used for second-trimester abortions in Canada, most of Europe, China and India, in contrast to the United States where 96% of second-trimester abortions are performed surgically by dilation and evacuation.
The uterine curettage is generally done under the effect of anesthesia, preferably spinal anesthesia in hemodynamically stable patients. The advantages of spinal anesthesia over general anesthesia include ease of technique, favorable effects on the pulmonary system, safety in patients with hyperthyroidism and non-tocolytic pharmacological properties. Additionally, by maintaining patient’s consciousness one can diagnose the complications like uterine perforation, cardiopulmonary distress and thyroid storm at an earlier stage than when the patient is sedated or is under general anesthesia.
Hydatidiform moles should be treated by evacuating the uterus by uterine suction or by surgical curettage as soon as possible after diagnosis, in order to avoid the risks of choriocarcinoma. Patients are followed up until their serum human chorionic gonadotrophin (hCG) level has fallen to an undetectable level. Invasive or metastatic moles (cancer) may require chemotherapy and often respond well to methotrexate. As they contain paternal antigens, the response to treatment is nearly 100%. Patients are advised not to conceive for half a year after hCG levels have normalized. The chances of having another molar pregnancy are approximately 1%.
Management is more complicated when the mole occurs together with one or more normal fetuses.
Treatment is always necessary.
The treatment for hydatidiform mole consists of the evacuation of pregnancy. Evacuation will lead to the relief of symptoms, and also prevent later complications. Suction curettage is the preferred method of evacuation. Hysterectomy is an alternative if no further pregnancies are wished for by the female patient. Hydatidiform mole also has successfully been treated with systemic (intravenous) methotrexate.
The treatment for invasive mole or choriocarcinoma generally is the same. Both are usually treated with chemotherapy. Methotrexate and dactinomycin are among the chemotherapy drugs used in GTD. Only a few women with GTD suffer from poor prognosis metastatic gestational trophoblastic disease. Their treatment usually includes chemotherapy. Radiotherapy can also be given to places where the cancer has spread, e.g. the brain.
Women who undergo chemotherapy are advised not to conceive for one year after completion of treatment. These women also are likely to have an earlier menopause. It has been estimated by the Royal College of Obstetricians and Gynaecologists that the age at menopause for women who receive single agent chemotherapy is advanced by 1 year, and by 3 years for women who receive multi agent chemotherapy.
Continuing glucocorticoids at the lowest effective dose and/or cautious use of azathioprine may be preferred in some patients, but needs to be weighed against potential adverse effects of such medications.
In pregnancy, changes in the levels of female sex hormones, such as estrogen, make a woman more likely to develop candidal vulvovaginitis. During pregnancy, the "Candida" fungus is more prevalent (common), and recurrent infection is also more likely. There is no clear evidence that treatment of asymptomatic candidal vulvovaginitis in pregnancy reduces the risk of preterm birth. Candidal vulvovaginitis in pregnancy should be treated with intravaginal clotrimazole or nystatin for at least 7 days.
The term «persistent trophoblastic disease» (PTD) is used when after treatment of a molar pregnancy, some molar tissue is left behind and again starts growing into a tumour. Although PTD can spread within the body like a malignant cancer, the overall cure rate is nearly 100%.
In the vast majority of patients, treatment of PTD consist of chemotherapy. Only about 10% of patients with PTD can be treated successfully with a second curettage.
Pregnancy does not have an adverse effect on the course of Behçet's disease and may possibly ameliorate its course. Still, there is a substantial variability in clinical course between patients and even for different pregnancies in the same patient. Also, the other way around, Behçet's disease confers an increased risk of pregnancy complications, miscarriage and Cesarean section.
Fertility may sometimes be restored by removal of adhesions, depending on the severity of the initial trauma and other individual patient factors. Operative hysteroscopy is used for visual inspection of the uterine cavity during adhesion dissection (adhesiolysis). However, hysteroscopy is yet to become a routine gynaecological procedure and only 15% of US gynecologists perform office hysteroscopy {Isaacson, 2002}. Adhesion dissection can be technically difficult and must be performed with care in order to not create new scars and further exacerbate the condition. In more severe cases, adjunctive measures such as laparoscopy are used in conjunction with hysteroscopy as a protective measure against uterine perforation. Microscissors are usually used to cut adhesions. Electrocauterization is not recommended.
As IUA frequently reform after surgery, techniques have been developed to prevent recurrence of adhesions. Methods to prevent adhesion reformation include the use of mechanical barriers (Foley catheter, saline-filled Cook Medical Balloon Uterine Stent, IUCD) and gel barriers (Seprafilm, Spraygel, autocrosslinked hyaluronic acid gel Hyalobarrier) to maintain opposing walls apart during healing {Tsapanos, 2002}; {Guida, 2004};{Abbott, 2004}, thereby preventing the reformation of adhesions. Antibiotic prophylaxis is necessary in the presence of mechanical barriers to reduce the risk of possible infections. A common pharmacological method for preventing reformation of adhesions is sequential hormonal therapy with estrogen followed by a progestin to stimulate endometrial growth and prevent opposing walls from fusing together {Roge, 1996}. However, there have been no randomized controlled trials (RCTs) comparing post-surgical adhesion reformation with and without hormonal treatment and the ideal dosing regimen or length of estrogen therapy is not known. The absence of prospective RCTs comparing treatment methods makes it difficult to recommend optimal treatment protocols. Furthermore, diagnostic severity and outcomes are assessed according to different criteria (e.g. menstrual pattern, adhesion reformation rate, conception rate, live birth rate). Clearly, more comparable studies are needed in which reproductive outcome can be analysed systematically.
Follow-up tests (HSG, hysteroscopy or SHG) are necessary to ensure that adhesions have not reformed. Further surgery may be necessary to restore a normal uterine cavity.
According to a recent study among 61 patients, the overall rate of adhesion recurrence was 27.9% and in severe cases this was 41.9%. Another study found that postoperative adhesions reoccur in close to 50% of severe AS and in 21.6% of moederate cases. Mild IUA, unlike moderate to severe synechiae, do not appear to reform.
A septum can be resected with surgery. Hysteroscopic removal of a uterine septum is generally the preferred method, as the intervention is relatively minor and safe in experienced hands. A follow-up imaging study should demonstrate the removal of the septum.
Tactile cold scissor metroplasty was described as a back technique for hysteroscopic challenges that interfere with proper visualization or uterine distention
It is not considered necessary to remove a septum that has not caused problems, especially in women who are not considering pregnancy. There is controversy over whether a septum should be removed prophylactically to reduce the risk of pregnancy loss prior to a pregnancy or infertility treatment.
A 2013 review concluded that there were no studies reporting on the link between intrauterine adhesions and long-term reproductive outcome after miscarriage, while similar pregnancy outcomes were reported subsequent to surgical management (e.g. D&C), medical management or conservative management (that is, watchful waiting). There is an association between surgical intervention in the uterus and the development of intrauterine adhesions, and between intrauterine adhesions and pregnancy outcomes, but there is still no clear evidence of any method of prevention of adverse pregnancy outcomes.
In theory, the recently pregnant uterus is particularly soft under the influence of hormones and hence, easily injured. D&C (including dilation and curettage, dilation and evacuation/suction curettage and manual vacuum aspiration) is a blind, invasive procedure, making it difficult to avoid endometrial trauma. Medical alternatives to D&C for evacuation of retained placenta/products of conception exist including misoprostol and mifepristone. Studies show this less invasive and cheaper method to be an efficacious, safe and an acceptable alternative to surgical management for most women. It was suggested as early as in 1993 that the incidence of IUA might be lower following medical evacuation (e.g. Misoprostol) of the uterus, thus avoiding any intrauterine instrumentation. So far, one study supports this proposal, showing that women who were treated for missed miscarriage with misoprostol did not develop IUA, while 7.7% of those undergoing D&C did. The advantage of misoprostol is that it can be used for evacuation not only following miscarriage, but also following birth for retained placenta or hemorrhaging.
Alternatively, D&C could be performed under ultrasound guidance rather than as a blind procedure. This would enable the surgeon to end scraping the lining when all retained tissue has been removed, avoiding injury.
Early monitoring during pregnancy to identify miscarriage can prevent the development of, or as the case may be, the recurrence of AS, as the longer the period after fetal death following D&C, the more likely adhesions may be to occur. Therefore, immediate evacuation following fetal death may prevent IUA.
The use of hysteroscopic surgery instead of D&C to remove retained products of conception or placenta is another alternative that could theoretically improve future pregnancy outcomes, although it could be less effective if tissue is abundant. Also, hysteroscopy is not a widely or routinely used technique and requires expertise.
There is no data to indicate that suction D&C is less likely than sharp curette to result in Asherman's. A recent article describes three cases of women who developed intrauterine adhesions following manual vacuum aspiration.
The treatment depends on the cause.
Severely anemic fetuses, including those with Rh disease and alpha thalassemia major, can be treated with blood transfusions while still in the womb. This treatment increases the chance that the fetus will survive until birth.
Because the black cherry tree is the preferred host tree for the eastern tent caterpillar, one approach to prevention is to simply remove the trees from the vicinity of horse farms, which was one of the very first recommendations made concerning MRLS. Next, because the brief time for which the full-grown ETCs are on the ground in the vicinity of pregnant mares, simply keeping pregnant mares out of contact with them is also an effective preventative mechanism. In this regard, one Kentucky horse farm took the approach of simply muzzling mares during an ETC exposure period, an approach which was reportedly effective.
No effective treatment for MRLS is apparent. Mares which aborted are treated with broad-spectrum antibiotics to avoid bacterial infections. The foals born from mares infected with MRLS are given supportive care and supplied with medication to reduce inflammatory response and improve blood flow, but none of the treatments appears to be effective, as the majority of the foals do not survive. Unilateral uveitis is treated symptomatically with antibiotics and anti-inflammatory drugs.
The exact incidence of maternal mortality related to placenta accreta and its complications is unknown, but has been reported to be as high as 6-7% in case series and surveys.
Hormonal and other changes in pregnancy affect physical performance. In the first three months it is known that a woman’s body produces a natural surplus of red blood cells, which are well supplied with oxygen-carrying hemoglobin, in order to support the growing fetus. A study of athletes before and after pregnancy by Professor James Pivarnik at the Human Energy Research laboratory in Michigan State University has found there is a 60 per cent increase in blood volume and that this could improve the body’s ability to carry oxygen to muscles by up to 30 percent. This would have obvious positive effects on aerobic capacity. Other potential advantages are obtained from the surge in hormones that pregnancy induces, predominantly progesterone and estrogen, but also testosterone, which could increase muscle strength. Increases in hormones like relaxin, which loosens the hip joints to prepare for childbirth, may have a performance-enhancing effect on joint mobility.
Several world records have been set by female athletes shortly after giving birth to their first child. This is accepted as a natural and unintended event.
Abortion doping refers to the rumoured practice of purposely inducing pregnancy for athletic performance-enhancing benefits, then aborting the pregnancy.
If symptomatic, testing is recommended. The risk of contracting Micoplasma infection can be reduced by the following:
- Using barrier methods such as condoms
- Seeking medical attention if you are experiencing symptoms suggesting a sexually transmitted infection.
- Seeking medical attention after learning that a current or former sex partner has, or might have had a sexually transmitted infection.
- Getting a STI history from your current partner and insisting they be tested and treated before intercourse.
- Avoiding vaginal activity, particularly intercourse, after the end of a pregnancy (delivery, miscarriage, or abortion) or certain gynecological procedures, to ensure that the cervix closes.
- Abstinence
Mycoplasmas have a triple-layered membrane and lack a cell wall. Commonly used antibiotics are generally ineffective because their efficacy is due to their ability to inhibit cell wall synthesis. Micoplasmas are not affected by penicillins and other antibiotics that act on the cell wall. The growth of micoplasmas in their host is inhibited by other broad-spectrum antibiotics. These broad-spectrum antibiotics inhibit the multiplication of the mycoplasma but does not kill them. Tetracyclines, macrolides, erythromycin, macrolides, ketolides, quinolones are used to treat mycoplasma infections. In addition to the penicillins, mycoplasmas are resistant to rifampicin. Mycoplasmas may be difficult to eradicate from human or animal hosts or from cell cultures by antibiotic treatment because of resistance to the antibiotic, or because it does not kill the mycoplasma cell. Mycoplasma cells are able to invade the cells of their hosts.
Hematometra is usually treated by surgical cervical dilation to drain the blood from the uterus. Other treatments target the underlying cause of the hematometra; for example, a hysteroscopy may be required to resect adhesions that have developed following a previous surgery. If the cause of the hematometra is unclear, a biopsy of endometrial tissue can be taken to test for the presence of a neoplasm (cancer). Antibiotics may be given as prophylaxis against the possibility of infection.
Women with a lifelong epileptic history are also liable to psychoses during labour in the puerperium. Women occasionally develop epilepsy for the first time in relation to their first pregnancy, and psychotic episodes have been described.
Chorionic hematoma (also chorionic hemorrhage) is the pooling of blood (hematoma) between the chorion, a membrane surrounding the embryo, and the uterine wall. It occurs in about 3.1% of all pregnancies, it is the most common sonographic abnormality and the most common cause of first trimester bleeding.