Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment is most commonly directed at autoimmune disease and may be needed to treat bulky lymphoproliferation. First line therapies include corticosteroids (very active but toxic with chronic use), and IVIgG, which are not as effective as in other immune cytopenia syndromes.
Second line therapies include: mycophenolate mofetil (cellcept) which inactivates inosine monophosphate, most studied in clinical trials with responses varying (relapse, resolution, partial response). It does not affect lymphoproliferation or reduce DNTs, with no drug-drug interactions. This treatment is commonly used agent in patients who require chronic treatment based on tolerance and efficacy. It may cause hypogammaglobulinemia (transient) requiring IVIgG replacement.
Sirolimus (rapamycin, rapamune) which is a mTOR (mammalian target of rapamycin) inhibitor can be active in most patients and can in some cases lead to complete or near-complete resolution of autoimmune disease (>90%) With this treatment most patients have complete resolution of lymphoproliferation, including lymphadenopathy and splenomegaly (>90%) and have elimination of peripheral blood DNTs. Sirolimus may not be as immune suppressive in normal lymphocytes as other agents. Some patients have had improvement in immune function with transition from cellcept to rapamycin and it has not been reported to cause hypogammaglobulinemia. Hypothetically, Sirolimus may have lower risk of secondary cancers as opposed to other immune suppressants and requires therapeutic drug monitoring. It is the second most commonly used agent in patients that require chronic therapy. It is mostly well tolerated (though side effects include mucositis, diarrhea, hyperlipidemia, delayed wound healing) with drug-drug interactions. It has better activity against autoimmune disease and lymphoproliferation than mycophenolate mofetil and other drugs; however, sirolimus requires therapeutic drug monitoring and can cause mucositis. A risk with any agent in pre-cancerous syndrome as immune suppression can decreased tumor immunosurvellence. Its mTOR inhibitors active against lymphomas, especially EBV+ lymphomas. The Goal serum trough is 5-15 ng/ml and can consider PCP prophylaxis but usually not needed.
Other treatments may include drugs like Fansidar, mercaptopurine: More commonly used in Europe. Another is rituximab but this can cause lifelong hypogammaglobulinemia and a splenectomy but there is a >30% risk of pneumococcal sepsis even with vaccination and antibiotic prophylaxis
PTLD may spontaneously regress on reduction or cessation of immunosuppressant medication, and can also be treated with addition of anti-viral therapy. In some cases it will progress to non-Hodgkin's lymphoma and may be fatal. A phase 2 study of adoptively transferred EBV-specific T cells demonstrated high efficacy with minimal toxicity.
While investigational drug therapies exist, no curative drug treatment exists for any of the MPDs. The goal of treatment for ET and PV is prevention of thrombohemorrhagic complications. The goal of treatment for MF is amelioration of anemia, splenomegaly, and other symptoms. Low-dose aspirin is effective in PV and ET. Tyrosine kinase inhibitors like imatinib have improved the prognosis of CML patients to near-normal life expectancy.
Recently, a "JAK2" inhibitor, namely ruxolitinib, has been approved for use in primary myelofibrosis. Trials of these inhibitors are in progress for the treatment of the other myeloproliferative neoplasms.
Available treatment falls into two modalities: treating infections and boosting the immune system.
Prevention of Pneumocystis pneumonia using trimethoprim/sulfamethoxazole is useful in those who are immunocompromised. In the early 1950s Immunoglobulin(Ig) was used by doctors to treat patients with primary immunodeficiency through intramuscular injection. Ig replacement therapy are infusions that can be either subcutaneous or intravenously administrated, resulting in higher Ig levels for about three to four weeks, although this varies with each patient.
Treatment depends on the grade (I-III) but typically consist of cortisone, rituximab and chemotherapy (etoposide, vincristine, cyclophosphamide, doxorubicin). Methotrexate has been seen to induce LYG. Interferon alpha has been used by the US National Cancer Institute with varying results. In recent years hematopoietic stem cell transplantation has been performed on LYG-patients with relative good success; a 2013 study identifying 10 cases found that 8 patients survived the treatment and were disease free several years later. Two of the disease free patients later died, one from suicide and one from graft versus host disease after a second transplantation 4 years later. The remaining two patients died from sepsis after the transplantation.
In secondary cases, treatment of the cause, where possible, is indicated. Additionally, treatment for HLH itself is usually required.
While optimal treatment of HLH is still being debated, current treatment regimes usually involve high dose corticosteroids, etoposide and cyclosporin. Intravenous immunoglobulin is also used. Methotrexate and vincristine have also been used. Other medications include cytokine targeted therapy.
An experimental treatment, an anti IFN-gamma monoclonal antibody tentatively named NI-0501, is in clinical trials for treating primary HLH. The FDA awarded breakthrough drug status to NI-0501 in 2016.
There is currently minimal therapeutic intervention available for BENTA disease. Patients are closely monitored for infections and for signs of monoclonal or oligoclonal B cell expansion that could indicate B cell malignancy. Splenectomy is unlikely to reduce B cell burden; peripheral blood B cell counts rose significantly in three patients who underwent the procedure. It remains to be determined whether immunosuppressive drugs, including B cell-depleting drugs such as rituximab, could be effective for treating BENTA disease.
Alemtuzumab has been investigated for use in treatment of refractory T-cell large granular lymphocytic leukemia.
Should treatment be started it should address both the paraprotein level and the lymphocytic B-cells.
In 2002, a panel at the International Workshop on Waldenström's Macroglobulinemia agreed on criteria for the initiation of therapy. They recommended starting therapy in patients with constitutional symptoms such as recurrent fever, night sweats, fatigue due to anemia, weight loss, progressive symptomatic lymphadenopathy or spleen enlargement, and anemia due to bone marrow infiltration. Complications such as hyperviscosity syndrome, symptomatic sensorimotor peripheral neuropathy, systemic amyloidosis, kidney failure, or symptomatic cryoglobulinemia were also suggested as indications for therapy.
Treatment includes the monoclonal antibody rituximab, sometimes in combination with chemotherapeutic drugs such as chlorambucil, cyclophosphamide, or vincristine or with thalidomide. Corticosteroids, such as prednisone, may also be used in combination. Plasmapheresis can be used to treat the hyperviscosity syndrome by removing the paraprotein from the blood, although it does not address the underlying disease. Ibrutinib is another agent that has been approved for use in this condition.
Recently, autologous bone marrow transplantation has been added to the available treatment options.
When primary or secondary resistance invariably develops, salvage therapy is considered. Allogeneic stem cell transplantation can induce durable remissions for heavily pre-treated patients.
The mainstay of treatment consists of thymectomy and immunoglobulin replacement with IVIG (Kelesidis, 2010). Immunodeficiency does not resolve after thymectomy (Arnold, 2015). To treat the autoimmune component of the disease, immune-suppression is sometimes used and it is often challenging to determine if a patient’s symptoms are infectious or autoimmune (Arnold, 2015).
Patients should have serological testing for antibodies to toxoplasma and cytomegalovirus. If receiving a transfusion, CMV negative blood should be used in those with negative serological testing. Live vaccines should also be avoided (Kelesidis, 2010). The CDC recommends pneumococcal, meningococcal, and Hib vaccination in those with diminished humoral and cell-mediated immunity (Hamborsky, 2015).
Some have advocated treating prophylactically with TMP-SMX if CD4 counts are lower than 200 cells/mm^3, similar to AIDS patients (Kelesidis, 2010).
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
Treatment is not necessary since the lesion is benign, however the person may have esthetic concerns about the appearance. The condition often resolves rapidly with high dose acyclovir or desiclovir but recurs once this therapy is stopped, or as the underlying immunocompromise worsens. Topical use of podophyllum resin or retinoids has also been reported to produce temporary remission. Antiretroviral drugs such as zidovudine may be effective in producing a significant regression of OHL. Recurrence of the lesion may also signify that highly active antiretroviral therapy (HAART) is becoming ineffective.
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.
Natural killer (NK) cell therapy is used in pediatrics for children with relapsed lymphoid leukemia. These patients normally have a resistance to chemotherapy, therefore, in order to continue on, must receive some kind of therapy. In some cases, NK cell therapy is a choice.
NK cells are known for their ability to eradicate tumor cells without any prior sensitization to them. One problem when using NK cells in order to fight off lymphoid leukemia is the fact that it is hard to amount enough of them to be effective. One can receive donations of NK cells from parents or relatives through bone marrow transplants. There are also the issues of cost, purity and safety. Unfortunately, there is always the possibility of Graft vs host disease while transplanting bone marrow.
NK cell therapy is a possible treatment for many different cancers such as Malignant glioma.
Once a diagnosis is made, the treatment is based on an individual’s clinical condition. Based on the apparent activation of the mTOR pathway, Lucas and colleagues treated patients with rapamycin, an mTOR inhibitor. This effectively reduced hepatosplenomegaly and lymphadenopathy, most likely by restoring the normal balance of naïve, effector, and memory cells in the patients’ immune system. More research is needed to determine the most effective timing and dosage of this medication and to investigate other treatment options. Investigators at the National Institute of Allergy and Infectious Diseases at the US National Institutes of Health currently have clinical protocols to study new approaches to the diagnosis and treatment of this disorder.
In general, the first line of treatment for Burkitt’s lymphoma is intensive chemotherapy. A few of these regimens are: the GMALL-B-ALL/NHL2002 protocol, the modified Magrath regimen (R-CODOX-M/IVAC). COPADM, hyper-CVAD, and the Cancer and Leukemia Group B (CALGB) 8811 regimen; these can be associated with rituximab. In older patients treatment may be dose-adjusted EPOCH with rituximab.
The effects of the chemotherapy, as with all cancers, depend on the time of diagnosis. With faster-growing cancers, such as Burkitt's, the cancer actually responds faster than with slower-growing cancers. This rapid response to chemotherapy can be hazardous to the patient, as a phenomenon called "tumor lysis syndrome" could occur. Close monitoring of the patient and adequate hydration is essential during the process. Since Burkitts lymphoma has high propensity to spread to the central nervous system (lymphomatous meningitis), intrathecal chemotherapy with methotrexate and/or ARA-C and/or prednisolone is given alongside with systemic chemotherapy.
Chemotherapy
- cyclophosphamide
- doxorubicin
- vincristine
- methotrexate
- cytarabine
- ifosfamide
- etoposide
- rituximab
Other treatments for Burkitt's lymphoma include immunotherapy, bone marrow transplants, stem cell transplant, surgery to remove the tumor, and radiotherapy.
Treatment consists of immunoglobulin replacement therapy, which replenishes Ig subtypes that the person lack. This treatment is given at frequent intervals for life, and is thought to help reduce bacterial infections and boost immune function. Before therapy begins, plasma donations are tested for known blood-borne pathogens, then pooled and processed to obtain concentrated IgG samples. Infusions can be administered in three different forms: intravenously (IVIg):, subcutaneously (SCIg), and intramuscularly (IMIg).
The administration of intravenous immunoglobulins requires the insertion of a cannula or needle in a vein, usually in the arms or hands. Because highly concentrated product is used, IVIg infusions take place every 3 to 4 weeks. Subcutaneous infusions slowly release the Ig serum underneath the skin, again through a needle, and takes place every week. Intramuscular infusions are no longer widely used, as they can be painful and are more likely to cause reactions.
People often experience adverse side effects to immunoglobulin infusions, including:
- swelling at the insertion site (common in SCIG)
- chills
- headache
- nausea (common in IVIG)
- fatigue (common in IVIG)
- muscle aches and pain, or joint pain
- fever (common in IVIG and rare in SCIG)
- hives (rare)
- thrombotic events (rare)
- aseptic meningitis (rare, more common in people with SLE)
- anaphylactic shock (very rare)
In addition to Ig replacement therapy, treatment may also involve immune suppressants, to control autoimmune symptoms of the disease, and high dose steroids like corticosteroids. In some cases, antibiotics are used to fight chronic lung disease resulting from CVID. The outlook for people varies greatly depending on their level of lung and other organ damage prior to diagnosis and treatment.
There are many lymphoproliferative disorders that are associated with organ transplantation and immunosuppressant therapies. In most reported cases, these cause B cell lymphoproliferative disorders; however, some T cell variations have been described. The T cell variations are usually caused by the prolonged use of T cell suppressant drugs, such as sirolimus, tacrolimus, or ciclosporin.
The only treatment for Omenn syndrome is chemotherapy followed by a bone marrow transplantation. Without treatment, it is rapidly fatal in infancy.
ANKL is treated similarly to most B-cell lymphomas. Anthracycline-containing chemotherapy regimens are commonly offered as the initial therapy. Some patients may receive a stem cell transplant.
Most patients will die 2 years after diagnosis.
Prognosis depends greatly on the nature and severity of the condition. Some deficiencies cause early mortality (before age one), others with or even without treatment are lifelong conditions that cause little mortality or morbidity. Newer stem cell transplant technologies may lead to gene based treatments of
debilitating and fatal genetic immune deficiencies. Prognosis of acquired immune deficiencies depends on avoiding or treating the causative agent or
condition (like AIDS).
Though BLSII is an attractive candidate for gene therapy, bone marrow transplant is currently the only treatment.
The prognosis is guarded with an overall mortality of 50%. Poor prognostic factors included HLH associated with malignancy, with half the patients dying by 1.4 months compared to 22.8 months for non-tumour associated HLH patients.
Secondary HLH in some individuals may be self-limited because patients are able to fully recover after having received only supportive medical treatment (i.e., IV immunoglobulin only). However, long-term remission without the use of cytotoxic and immune-suppressive therapies is unlikely in the majority of adults with HLH and in those with involvement of the central nervous system (brain and/or spinal cord).
Treatment for "B cell deficiency"(humoral immune deficiency) depends on the cause, however generally the following applies:
- Treatment of infection(antibiotics)
- Surveillance for malignancies
- Immunoglobulin replacement therapy