Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Steroids are the mainstay of treatment for rheumatoid arthritis, and have been shown to improve rheumatoid pleuritis. This would seem to be an outdated view of the treatment for this disease. More modern methods form the mainstay of treatment today. (no references?)
Corticosteroids remain the main treatment modality for IOI. There is usually a dramatic response to this treatment and is often viewed as pathognomonic for this disease. Although response is usually quick, many agree that corticosteroids should be continued on a tapering basis to avoid breakthrough inflammation.
Although many respond to corticosteroid treatment alone, there are several cases in which adjuvant therapy is needed. While many alternatives are available, there is no particular well-established protocol to guide adjuvant therapy. Among the available options there is: surgery, alternative corticosteroid delivery, radiation therapy, non-steroidal anti-inflammatory drugs, cytotoxic agents (chlorambucil, cyclophosphamide), corticosteroid sparing immunosuppressants (methotrexate, cyclosporine, azathioprine), IV immune-globin, plasmapheresis, and biologic treatments (such as TNF-α inhibitors).
The goal of treatment of malignant pleural effusions is relief of breathlessness. Occasionally, treatment of the underlying cancer can cause resolution of the effusion. This may be the case with types of cancer that respond well to chemotherapy, such as small cell carcinoma or lymphoma. Simple aspiration of pleural fluid can relieve breathlessness rapidly but fluid and symptoms will usually recur within a couple of weeks. For this reason, more permanent treatments are usually used to prevent fluid recurrence. Standard treatment involves chest tube insertion and pleurodesis. However, this treatment requires an inpatient stay of approximately 2–7 days, can be painful and has a significant failure rate. This has led to the development of tunneled pleural catheters (e.g., Pleurx Catheters), which allow outpatient treatment of effusions.
Treatment of Meigs' syndrome consists of thoracentesis and paracentesis to drain off the excess fluid (exudate), and unilateral salpingo-oophorectomy or wedge resection to correct the underlying cause.
There is no standard therapy for multicentric Castleman disease. Treatment modalities change based on HHV-8 status, so it is essential to determine HHV-8 status before beginning treatment. For HHV-8-associated MCD the following treatments have been used: rituximab, antiviral medications such as ganciclovir, and chemotherapy.
Treatment with the antiherpesvirus medication ganciclovir or the anti-CD20 B cell monoclonal antibody, rituximab, may markedly improve outcomes. These medications target and kill B cells via the B cell specific CD20 marker. Since B cells are required for the production of antibodies, the body's immune response is weakened whilst on treatment and the risk of further viral or bacterial infection is increased. Due to the uncommon nature of the condition there are not many large scale research studies from which standardized approaches to therapy may be drawn, and the extant case studies of individuals or small cohorts should be read with caution. As with many diseases, the patient's age, physical state and previous medical history with respect to infections may impact the disease progression and outcome.
For HHV-8-negative MCD (idiopathic MCD), the following treatments have been used: corticosteroids, rituximab, monoclonal antibodies against IL-6 such as tocilizumab and siltuximab, and the immunomodulator thalidomide.
Prior to 1996 MCD carried a poor prognosis of about 2 years, due to autoimmune hemolytic anemia and non-Hodgkin's lymphoma which may arise as a result of proliferation of infected cells. The timing of diagnosis, with particular attention to the difficulty of determining the cause of B symptoms without a CT scan and lymph node biopsy, may have a significant impact on the prognosis and risk of death. Left untreated, MCD usually gets worse and becomes increasingly difficult and unresponsive to current treatment regimens.
Siltuximab prevents it from binding to the IL-6 receptor, was approved by the U.S. Food and Drug Administration for the treatment of multicentric Castleman disease on April 23, 2014. Preliminary data suggest that treatment siltuximab may achieve tumour and symptomatic response in 34% of patients with MCD.
Other treatments for multicentric Castleman disease include the following:
- Corticosteroids
- Chemotherapy
- Thalidomide
Since the mechanism behind chylothorax is not well understood, treatment options are limited. Drainage of the fluid out of the pleural space is essential to obviate damage to organs, especially the inhibition of lung function by the counter pressure of the chyle. Another treatment option is pleuroperitoneal shunting (creating a communication channel between pleural space and peritoneal cavity). By this surgical technique loss of essential triglycerides that escape the thoracic duct can be prevented. Omitting fat (in particular FFA) from the diet is essential. Either surgical or chemical pleurodesis are options: the leaking of lymphatic fluids is stopped by irritating the lungs and chest wall, resulting in a sterile inflammation. This causes the lung and the chest wall to be fused together which prevents the leaking of lymphatic fluids into the pleural space. The medication octreotide has been shown to be beneficial and in some cases will stop the chylothorax after a few weeks.
In animals, the most effective form of treatment until recently has been surgical ligation of the thoracic duct combined with partial pericardectomy. There is at least one case report (in a cat) of clinical response to treatment with rutin.
Ideally, the treatment of pleurisy is aimed at eliminating the underlying cause of the disease.
- If the pleural fluid is infected, treatment involves antibiotics and draining the fluid. If the infection is tuberculosis or from a fungus, treatment involves long-term use of antibiotics or antifungal medicines.
- If the fluid is caused by tumors of the pleura, it may build up again quickly after it is drained. Sometimes anti-tumor medicines will prevent further fluid buildup. If they don't, the doctor may seal the pleural space. This is called pleurodesis. Pleurodesis involves the drainage of all the fluid out of the chest through a chest tube. A substance is inserted through the chest tube into the pleural space. This substance irritates the surface of the pleura. This causes the two layers of the pleurae to squeeze shut so there is no room for more fluid to build up.
- Chemotherapy or radiation treatment also may be used to reduce the size of the tumors.
- If congestive heart failure is causing the fluid buildup, treatment usually includes diuretics and other medicines.
The treatment for pleurisy depends on its origin and is prescribed by a physician on a base of an individual assessment. Paracetamol (acetaminophen) and amoxicillin, or other antibiotics in case of bacterial infections, are common remedies dispensed by doctors to relieve the initial symptoms and pain in the chest, while viral infections are self-limited. Non-steroidal anti-inflammatory drugs (NSAIDs), preferably indometacin, are usually employed as pain control agents.
A couple of medications are used to relieve pleurisy symptoms:
- Paracetamol (acetaminophen) or anti-inflammatory agents to control pain and decrease inflammation. Only indomethacin (brand name Indocin) has been studied with respect to relief of pleurisy.
- Codeine-based cough syrups to control the cough
There may be a role for the use of corticosteroids (for tuberculous pleurisy), tacrolimus (Prograf) and methotrexate (Trexall, Rheumatrex) in the treatment of pleurisy. Further studies are needed.
Treatment depends on the underlying cause and the severity of the heart impairment. Pericardial effusion due to a viral infection usually goes away within a few weeks without the treatment. Some pericardial effusions remain small and never need treatment. If the pericardial effusion is due to a condition such as lupus, treatment with anti-inflammatory medications may help. If the effusion is compromising heart function and causing cardiac tamponade, it will need to be drained, most commonly by a needle inserted through the chest wall and into the pericardial space called pericardiocentesis. A drainage tube is often left in place for several days. In some cases, surgical drainage may be required by cutting through the pericardium creating a pericardial window.
Treatment depends on the underlying cause of the pleural effusion.
Therapeutic aspiration may be sufficient; larger effusions may require insertion of an intercostal drain (either pigtail or surgical). When managing these chest tubes, it is important to make sure the chest tubes do not become occluded or clogged. A clogged chest tube in the setting of continued production of fluid will result in residual fluid left behind when the chest tube is removed. This fluid can lead to complications such as hypoxia due to lung collapse from the fluid, or fibrothorax if scarring occurs. Repeated effusions may require chemical (talc, bleomycin, tetracycline/doxycycline), or surgical pleurodesis, in which the two pleural surfaces are scarred to each other so that no fluid can accumulate between them. This is a surgical procedure that involves inserting a chest tube, then either mechanically abrading the pleura or inserting the chemicals to induce a scar. This requires the chest tube to stay in until the fluid drainage stops. This can take days to weeks and can require prolonged hospitalizations. If the chest tube becomes clogged, fluid will be left behind and the pleurodesis will fail.
Pleurodesis fails in as many as 30% of cases. An alternative is to place a PleurX Pleural Catheter or Aspira Drainage Catheter. This is a 15Fr chest tube with a one-way valve. Each day the patient or care givers connect it to a simple vacuum tube and remove from 600 to 1000 mL of fluid, and can be repeated daily. When not in use, the tube is capped. This allows patients to be outside the hospital. For patients with malignant pleural effusions, it allows them to continue chemotherapy, if indicated. Generally, the tube is in for about 30 days and then it is removed when the space undergoes a spontaneous pleurodesis.
Many people with this condition have no symptoms. Treatment is aimed at the health problems causing the lung problem and the complications caused by the disorder.
Fast-acting drugs for RA include aspirin and corticosteroids, which alleviate pain and reduce inflammation. Slow-acting drugs termed disease modifying antirheumatic drugs (DMARDs), include gold, methotrexate and hydroxychloroquine (Plaquenil), which promote disease remission and prevent progressive joint destruction. In patients with less severe RA, pain relievers, anti-inflammatory drugs and physical rest are sufficient to improve quality of life. In patients with joint deformity, surgery is the only alternative for recovering articular function.
Prognosis is related to the underlying disorder and the type and severity of lung disease. In severe cases, lung transplantation can be considered. This is more common in cases of bronchiolitis obliterans, pulmonary fibrosis, or pulmonary hypertension. Most complications are not fatal, but does reduce life expectancy to an estimated 5 to 10 years.
It is generally resistant to cancer chemotherapy drugs that are active against other lymphomas, and carries a poor prognosis.
Sirolimus has been proposed as a treatment option.
There is no readily available evidence on the route of administration and duration of antibiotics in patients with pleural empyema. Experts agree that all patients should be hospitalized and treated with antibiotics intravenously. The specific antimicrobial agent should be chosen based on Gram stain and culture, or on local epidemiologic data when these are not available. Anaerobic coverage must be included in all adults, and in children if aspiration is likely. Good pleural fluid and empyema penetration has been reported in adults for penicillins, ceftriaxone, metronidazole, clindamycin, vancomycin, gentamycin and ciprofloxacin. Aminoglycosides should typically be avoided as they have poor penetration into the pleural space. There is no clear consensus on duration of intravenous and oral therapy. Switching to oral antibiotics can be considered upon clinical and objective improvement (adequate drainage and removal of chest tube, declining CRP, temperature normalization). Oral antibiotic treatment should then be continued for another 1–4 weeks, again based on clinical, biochemical and radiological response.
As reported by Dispenzieri "et al." Mayo Clinic treatment regimens are tailored to treat the clinical manifestations and prognosis for the rate of progression of the POEMS syndrome in each patient. In rare cases, patients may have minimal or no symptoms at presentation or after successful treatment of their disorder. These patients may be monitored every 2–3 months for symptoms and disease progression. Otherwise, treatment is divided based on the local versus systemic spread of its clonal plasma cells. Patients with one or two plasmacytoma bone lesions and no clonal plasma cells in their bone marrow biopsy specimens are treated by surgical removal or radiotherapy of their tumors. These treatments can relieve many of the syndromes clinical manifestations including neuropathies, have a 10-year overall survival of 70% and a 6-year progression-free survival of 62%. Patients with >2 plasmacytoma bone lesions and/or increases in bone marrow clonal plasma cells are treated with a low-dose or high-dose chemotherapy regimen, i.e. a corticosteroid such as dexamethasone plus an alkylating agents such as melphalan. Dosage regimens are selected on the basis of patient tolerance. Hematological response rates to the dexamethasone/melphalan regimens have been reported to be in the 80% range with neurological response rates approaching 100%. Patients successfully treated with the high-dose dexamethasone/melphalan regimen have been further treated with autologous stem cell transplantation. In 59 patients treated with the chemotherapy/transplantation regimen, the Mayo Clinic reported progression-free survival rates of 98%, 94%, and 75% at 1, 2, and 5 years, respectively.
Other treatment regiments are being studied. Immunomodulatory imide drugs such as thalidomide and lenalidomide have been used in combination with dexamethasone to treat POEMS syndrome patients. While the mechanism of action fo these immunomodulators are not clear, they do inhibit the production of cytokines suspected of contributing to POEMS syndrome such as VEGF, TNFα, and IL-6 and stimulate T cells and NK cells to increase their production of interferon gamma and interleukin 2 (see immunomodulatory imide drug's mechanism of action). A double blind study of 25 POEMS syndrome patients found significantly better results (VEGF reduction, neuromuscular function improvement, quality of life improvement) in patients treated with thalidomide plus dexamethasone compared to patients treated with a thalidomide placebo plus dexamethasone.
Since VEGF plays a central role in the symptoms of POEMS syndrome, some have tried bevacizumab, a monoclonal antibody directed against VEGF. While some reports were positive, others have reported capillary leak syndrome suspected to be the result of overly rapid lowering of VEGF levels. It therefore remains doubtful as to whether this will become part of standard treatment for POEMS syndrome.
Proven empyema (as defined by the "golden" criteria mentioned earlier) is an indication for prompt chest tube drainage. This has been shown to improve resolution of the infection and shorten hospital admission. Data from a meta-analysis has shown that a pleural fluid pH of <7.2 is the most powerful indicator to predict the need for chest tube drainage in patients with non-purulent, culture negative fluid. Other indications for drainage include poor clinical progress during treatment with antibiotics alone and patients with a loculated pleural collection.
Because of the viscous, lumpy nature of infected pleural fluid, in combination with possible septation and loculation, it has been proposed that intrapleural fibrinolytic or mucolytic therapy might improve drainage and therefore might have a positive effect on the clinical outcome. Intrapleural fibrinolysis with urokinase decreased the need for surgery but there is a trend to increased serious side effects.
Approximately 15 to 40 percent of people require surgical drainage of the infected pleural space because of inadequate drainage due to clogging of the chest tube or loculated empyema. Patients should thus be considered for surgery if they have ongoing signs of sepsis in association with a persistent pleural collection despite drainage and antibiotics. Video-assisted thoracoscopic surgery (VATS) is used as a first-line therapy in many hospitals, although open thoracic drainage remains a frequently used alternative technique.
Before the development of modern cardiovascular surgery, cases of acute mediastinitis usually arose from either perforation of the esophagus or from contiguous spread of odontogenic or retropharyngeal infections. However, in modern practice, most cases of acute mediastinitis result from complications of cardiovascular or endoscopic surgical procedures.
Treatment usually involves aggressive intravenous antibiotic therapy and hydration. If discrete fluid collections or grossly infected tissue have formed (such as abscesses), they may have to be surgically drained or debrided.
Enucleation (surgical removal of the eye) is the treatment of choice for large ciliary body melanomas. Small or medium sized tumors may be treated by an "iridocyclectomy". Radiotherapy may be appropriate in selected cases.
Corticosteroids are the mainstay of treatment of IPH, though they are controversial and lack clear evidence in their favour. They are thought to decrease the frequency of haemorrhage, while other studies suggest that they do not have any effect on the course or prognosis of this disease. In either case, steroid therapy has significant side effects. Small trials have investigated the use of other medications, but none has emerged as a clear standard of care. This includes immune modulators such as hydroxychloroquine, azathioprine, and cyclophosphamide. 6-mercaptopurine as a long-term therapy may prevent pulmonary haemorrhage. A 2007 scientific letter. reports preliminary success in preventing pulmonary haemorrhage with the anti-oxidant N-acetylcysteine.
No treatment has been found to be routinely effective. NSAIDs and COX-2 inhibitors are not generally helpful other than for general pain relief. They do not seem to help reduce effusions or prevent their occurrence. Low-dose colchicine (and some other ‘anti-rheumatic’ therapies e.g. hydroxychloroquine) have been used with some success. (Use of methotrexate and intramuscular gold have not been reported in the literature). More aggressive treatments such as synovectomy, achieved using intra-articular agents (chemical or radioactive) can provide good results, with efficacy reported for at least 1 year.
Reducing acute joint swelling:
Arthrocentesis (or drainage of joint) may be useful to relieve joint swelling and improve range of motion. Local steroid injections can also reduce fluid accumulation short-term, but do not prevent onset of episodes. These treatments provide temporary relief only. Bed rest, ice packs splints and exercise are ineffective.
A single case report of a patient with treatment-refractory IH describes the use of anakinra, an interleukin 1 receptor antagonist. At the first sign of any attack, a single 100 mg dose was given. With this dosing at onset of attacks, each episode of effusion was successfully terminated.
Reducing frequency and severity of IH episodes:
Case reports indicate some success using long-term, low-dose colchicine (e.g. 0.5 mg to 1 mg daily). A recent single case report has shown hydroxychloroquine (300 mg daily) to be effective too.
Small-sized clinical trials have shown positive results with (1) chemical and (2) radioactive synovectomy. (1) Setti et al. treated 53 patients with rifampicin RV (600 mg intra-articular injections weekly for approximately 6 weeks) with good results at 1 year follow-up. (2) Top and Cross used single doses of intra-articular radioactive gold in 18 patients with persistent effusions of mixed causes including 3 with IH. All 3 patients with IH responded well to treatment at one-year follow-up.
ILD is not a single disease, but encompasses many different pathological processes. Hence treatment is different for each disease.
If a specific occupational exposure cause is found, the person should avoid that environment. If a drug cause is suspected, that drug should be discontinued.
Many cases due to unknown or connective tissue-based causes are treated with corticosteroids, such as prednisolone. Some people respond to immunosuppressant treatment. Patients with a low level of oxygen in the blood may be given supplemental oxygen.
Pulmonary rehabilitation appears to be useful. Lung transplantation is an option if the ILD progresses despite therapy in appropriately selected patients with no other contraindications.
On October 16, 2014, the Food and Drug Administration approved a new drug for the treatment of Idiopathic Pulmonary Fibrosis (IPF). This drug, Ofev (nintedanib), is marketed by Boehringer Ingelheim Pharmaceuticals, Inc. This drug has been shown to slow the decline of lung function although the drug has not been shown to reduce mortality or improve lung function. The estimated cost of the drug per year is approximately $94,000.
The treatment in viral or idiopathic pericarditis is with aspirin, or non-steroidal anti-inflammatory drugs (NSAIDs such as ibuprofen). Colchicine may be added to the above as it decreases the risk of further episodes of pericarditis.
Severe cases may require one or more of the following:
- pericardiocentesis to treat pericardial effusion/tamponade
- antibiotics to treat tuberculosis or other bacterial causes.
- steroids are used in acute pericarditis but are not favored because they increase the chance of recurrent pericarditis.
- in rare cases, surgery
- in cases of constrictive pericarditis, pericardiectomy
Treatment is directed at correcting the underlying cause. Post-surgical atelectasis is treated by physiotherapy, focusing on deep breathing and encouraging coughing. An incentive spirometer is often used as part of the breathing exercises. Walking is also highly encouraged to improve lung inflation. People with chest deformities or neurologic conditions that cause shallow breathing for long periods may benefit from mechanical devices that assist their breathing. One method is continuous positive airway pressure, which delivers pressurized air or oxygen through a nose or face mask to help ensure that the alveoli do not collapse, even at the end of a breath. This is helpful, as partially inflated alveoli can be expanded more easily than collapsed alveoli. Sometimes additional respiratory support is needed with a mechanical ventilator.
The primary treatment for acute massive atelectasis is correction of the underlying cause. A blockage that cannot be removed by coughing or by suctioning the airways often can be removed by bronchoscopy. Antibiotics are given for an infection. Chronic atelectasis is often treated with antibiotics because infection is almost inevitable. In certain cases, the affected part of the lung may be surgically removed when recurring or chronic infections become disabling or bleeding is significant. If a tumor is blocking the airway, relieving the obstruction by surgery, radiation therapy, chemotherapy, or laser therapy may prevent atelectasis from progressing and recurrent obstructive pneumonia from developing.
During an acute flare-up, therapy is targeted at reducing the inflammation present, and dilating the pupil. Mydriasis is important, as pupillary constriction is the primary reason for pain. Anti-inflammatory therapy is usually given both systemically, often in the form of flunixin meglumine, and topically, as prednisolone acetate. The mydriatic of choice is atropine. In the periods between acute attacks, no therapy has been shown to be beneficial.
The acute uveitis phase of VKH is usually responsive to high-dose oral corticosteroids; parenteral administration is usually not required. However, ocular complications may require an subtenon or intravitreous injection of corticosteroids or bevacizumab. In refractory situations, other immunosuppressives such as cyclosporine, or tacrolimus, antimetabolites (azathioprine, mycophenolate mofetil or methotrexate), or biological agents such as intravenous immunoglobulins (IVIG) or infliximab may be needed.