Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Once a diagnosis is made, each individual's treatment is based on an individual’s clinical condition. Hematopoietic stem cell transplant is a possible treatment of this condition but its effectiveness is unproven.
Additionally, magnesium supplementation is a promising potential treatment for XMEN. One of the consequences of loss of "MAGT1" function is a decreased level of unbound intracellular Mg2+. This decrease leads to loss of expression of an immune cell receptor called "NKG2D", which is involved in EBV-immunity. Remarkably, Mg2+ supplementation can restore "NKG2D" expression and other functions that are abnormal in patients with XMEN. Early evidence suggests continuous oral magnesium threonate supplementation is safe and well tolerated. Nonetheless, further research is needed to evaluate the use of Mg2+ as a treatment for XMEN. It remains unclear if such supplementation will protect against the development of lymphoma in patients with XMEN. Investigators at the National Institute of Allergy and Infectious Diseases at the US National Institutes of Health currently have clinical protocols to study new approaches to the diagnosis and treatment of this disorder.
The mainstay of treatment consists of thymectomy and immunoglobulin replacement with IVIG (Kelesidis, 2010). Immunodeficiency does not resolve after thymectomy (Arnold, 2015). To treat the autoimmune component of the disease, immune-suppression is sometimes used and it is often challenging to determine if a patient’s symptoms are infectious or autoimmune (Arnold, 2015).
Patients should have serological testing for antibodies to toxoplasma and cytomegalovirus. If receiving a transfusion, CMV negative blood should be used in those with negative serological testing. Live vaccines should also be avoided (Kelesidis, 2010). The CDC recommends pneumococcal, meningococcal, and Hib vaccination in those with diminished humoral and cell-mediated immunity (Hamborsky, 2015).
Some have advocated treating prophylactically with TMP-SMX if CD4 counts are lower than 200 cells/mm^3, similar to AIDS patients (Kelesidis, 2010).
In terms of treatment the following are done to manage the IPEX syndrome in those affected individuals(corticosteroids are the first treatment that is used):
- TPN(nutritional purpose)
- Cyclosporin A and FK506
- Sirolimus(should FK506 prove non-effective)
- Granulocyte colony stimulating factor
- Bone marrow transplant
- Rituximab
Treatment consists of immunoglobulin replacement therapy, which replenishes Ig subtypes that the person lack. This treatment is given at frequent intervals for life, and is thought to help reduce bacterial infections and boost immune function. Before therapy begins, plasma donations are tested for known blood-borne pathogens, then pooled and processed to obtain concentrated IgG samples. Infusions can be administered in three different forms: intravenously (IVIg):, subcutaneously (SCIg), and intramuscularly (IMIg).
The administration of intravenous immunoglobulins requires the insertion of a cannula or needle in a vein, usually in the arms or hands. Because highly concentrated product is used, IVIg infusions take place every 3 to 4 weeks. Subcutaneous infusions slowly release the Ig serum underneath the skin, again through a needle, and takes place every week. Intramuscular infusions are no longer widely used, as they can be painful and are more likely to cause reactions.
People often experience adverse side effects to immunoglobulin infusions, including:
- swelling at the insertion site (common in SCIG)
- chills
- headache
- nausea (common in IVIG)
- fatigue (common in IVIG)
- muscle aches and pain, or joint pain
- fever (common in IVIG and rare in SCIG)
- hives (rare)
- thrombotic events (rare)
- aseptic meningitis (rare, more common in people with SLE)
- anaphylactic shock (very rare)
In addition to Ig replacement therapy, treatment may also involve immune suppressants, to control autoimmune symptoms of the disease, and high dose steroids like corticosteroids. In some cases, antibiotics are used to fight chronic lung disease resulting from CVID. The outlook for people varies greatly depending on their level of lung and other organ damage prior to diagnosis and treatment.
Corticosteroids are administered through IV or orally. They cause lymphocytopenia, a condition where white blood cell levels are abnormally low. Corticosteroids cause white blood cell death, lowering their numbers throughout the body. They also cause white blood cells to recirculate away from the area of damage (the retina). This minimizes damage caused by the antibodies produced by the white blood cells. Often, this is treatment is combined with plasmapheresis. Instead of treating the plasma and blood cells, they are replaced with a healthy donor mixture. Patients who respond positively show improved visual fields and an almost complete disappearance of anti-retinal antibodies.
Plasmapheresis involves separating blood into two parts - blood cells and plasma. The blood plasma components, such as the antibodies, are treated outside of the body. After removal of the disease-associated antibodies, the blood cells and plasma are transfused back into the body. Response to this treatment depends on how much retinal damage has been done. Patients who respond positively show significant visual gains.
A number of types of radiation therapy may be used including total skin electron therapy. While this therapy does not generally result in systemic toxic effects it can produce side effects involving the skin. It is only avaliable at a few institutions.
Treatment typically includes some combination of photodynamic therapy, radiation therapy, chemotherapy, and biologic therapy.
Treatments are often used in combination with phototherapy and chemotherapy, though pure chemotherapy is rarely used today. No single treatment type has revealed clear-cut benefits in comparison to others, treatment for all cases remains problematic.
There is no proven or standard first-line chemotherapy that works for the majority of AITL patients. There are several clinical trials that offer treatment options that can fight the disease. Stem cell transplantation is the treatment of choice, with the allogeneic one being the preference because AITL tends to recur after autologous transplants.
The following types of CVID have been identified, and correspond to mutations in different gene segments.
Lymphocyte-variant hypereosinophilia usually takes a benign and indolent course. Long term treatment with corticosteroids lowers blood eosinophil levels as well as suppresses and prevents complications of the disease in >80% of cases. However, signs and symptoms of the disease recur in virtually all cases if corticosteroid dosages are tapered in order to reduce the many adverse side effects of corticosteroids. Alternate treatments used to treat corticosteroid resistant disease or for use as corticosteroid-sparing substitutes include interferon-α or its analog, Peginterferon alfa-2a, Mepolizumab (an antibody directed against IL-5), Ciclosporin (an Immunosuppressive drug), imatinib (an inhibitor of tyrosine kinases; numerous tyrosine kinase cell signaling proteins are responsible for the growth and proliferation of eosinophils {see clonal eosinophilia}), methotrexate and Hydroxycarbamide (both are chemotherapy and immunosuppressant drugs), and Alemtuzumab (a antibody that binds to the CD52 antigen on mature lymphocytes thereby marking them for destruction by the body). The few patients who have been treated with these alternate drugs have exhibited good responses in the majority of instances. Reslizumab, a newly developed antibody directed against interleukin 5 that has been successfully used to treat 4 patients with the hypereosinophilic syndrome, may also be of use for lymphocyte-variant eosinophilia. Patients suffering minimal or no disease complications have gone untreated.
In 10% to 25% of patients, mostly 3 to 10 years after initical diagnosis, the indolent course of lymphocyte-variant hypereosinophilia changes. Patients exhibit rapid increases in lymphadenopathy, spleen size, and blood cell numbers, some cells of which take on the appearance of immature and/or malignant cells. Their disease soon thereafter escalates to an angioimmunoblastic T-cell lymphoma, peripheral T cell lymphoma, Anaplastic large-cell lymphoma (which unlike most lymphomas of this type is Anaplastic lymphoma kinase-negative), or Cutaneous T cell lymphoma. The malignantly transformed disease is aggressive and has a poor prognosis. Recommended treatment includes chemotherapy with Fludarabine, Cladribine, or the CHOP combination of drugs followed by bone marrow transplantation.
Most patients with T-cell prolymphocytic leukemia require immediate treatment.
T-cell prolymphocytic leukemia is difficult to treat, and it does not respond to most available chemotherapeutic drugs. Many different treatments have been attempted, with limited success in certain patients: purine analogues (pentostatin, fludarabine, cladribine), chlorambucil, and various forms of combination chemotherapy regimens, including cyclophosphamide, doxorubicin, vincristine, prednisone (CHOP), etoposide, bleomycin (VAPEC-B).
Alemtuzumab (Campath), an anti-CD52 monoclonal antibody that attacks white blood cells, has been used in treatment with greater success than previous options. In one study of previously treated people with T-PLL, people who had a complete response to alemtuzumab survived a median of 16 months after treatment.
Some patients who successfully respond to treatment also undergo stem cell transplantation to consolidate the response.
Vitamin D/Sunlight
Omega-3 Fatty Acids
Probiotics/Microflora
Antioxidants
There is as yet inadeqaute data from randomised controlled trials.
Treatment with HAART and ACE inhibitors/Angiotensin receptor blockers has been shown to be beneficial and should be given to all patients unless otherwise contra-indicated. General renoprotective measures and the treatment of the complications of nephrotic syndrome and kidney failure are adjunctive.
Corticosteroid treatment can be useful in patients who do not respond to the above treatment. There is some evidence that ciclosporin might be helpful in selective cases, however further trials are required on both steroids and ciclosporin before these drugs can become standardised treatment if at all.
PFAPA syndrome typically resolves spontaneously. Treatment options are used to lessen the severity of episodes. Treatment is either medical or surgical.
One treatment often used is a dose of a corticosteroid at the beginning of each fever episode. A single dose usually ends the fever within several hours. However, in some children, they can cause the fever episodes to occur more frequently. Interleukin-1 inhibition appears to be effective in treating this condition.
Surgical removal of the tonsils appears to be beneficial compared to no surgery in symptom resolution and number of future episodes. The evidence to support surgery is; however, of moderate quality.
Surgical resection is usually ineffective because of the depth of the tumour. Treatment with irradiation and corticosteroids often only produces a partial response and tumour recurs in more than 90% of patients. Median survival is 10 to 18 months in immunocompetent patients, and less in those with AIDS. The addition of IV methotrexate and folinic acid (leucovorin) may extend survival to a median of 3.5 years. If radiation is added to methotrexate, median survival time may increase beyond 4 years. However, radiation is not recommended in conjunction with methotrexate because of an increased risk of leukoencephalopathy and dementia in patients older than 60. In AIDS patients, perhaps the most important factor with respect to treatment is the use of highly active anti-retroviral therapy (HAART), which affects the CD4+ lymphocyte population and the level of immunosuppression. The optimal treatment plan for patients with PCNSL has not been determined. Combination chemotherapy and radiotherapy at least doubles survival time, but causes dementia and leukoencephalopathy in at least 50% of patients who undergo it. The most studied chemotheraputic agent in PCNSL is methotrexate (a folate analogue that interferes with DNA repair). Methotrexate therapy in patients with PCNSL typically requires hospitalization for close monitoring and intravenous fluids. Leucovorin is often given for the duration of the therapy. Standard chemotherapeutic regimens for lymphoma such as CHOP are ineffective in PCNSL, probably due to poor penetration of the agents through the blood brain barrier.
Newer treatments, such as high dose chemotherapy combined with stem cell transplant are proving to increase survival by years.
A phase 1 clinical trial of ibrutinib - an inhibitor of Bruton's tyrosine kinase - in 13 patients reported responses in 10 (77%). Five of the responses were complete.
The suppression of CD4 T cells by HIV (or by immunosuppressive drugs) causes a decrease in the body's normal response to certain infections. Not only does this make it more difficult to fight the infection, it may mean that a level of infection that would normally produce symptoms is instead undetected (subclinical infection). If the CD4 count rapidly increases (due to effective treatment of HIV, or removal of other causes of immunosuppression), a sudden increase in the inflammatory response produces nonspecific symptoms such as fever, and in some cases a worsening of damage to the infected tissue.
There are two common IRIS scenarios. The first is the “unmasking” of an opportunistic infection. The second is the “paradoxical” symptomatic relapse of a prior infection despite microbiologic treatment success. Often in paradoxical IRIS, microbiologic cultures are sterile. In either scenario, there is hypothesized reconstitution of antigen-specific T cell-mediated immunity with activation of the immune system following HIV therapy against persisting antigen, whether present as intact organisms, dead organisms, or debris.
Though these symptoms can be dangerous, they also indicate that the body may now have a better chance to defeat the infection. The best treatment for this condition is unknown. In paradoxical IRIS reactions, the events will usually spontaneously get better with time without any additional therapy. In unmasking IRIS, the most common treatment is to administer antibiotic or antiviral drugs against the infectious organism. In some severe cases, anti-inflammatory medications, such as corticosteroids are needed to suppress inflammation until the infection has been eliminated.
Infections most commonly associated with IRIS include "Mycobacterium tuberculosis" and cryptococcal meningitis. Persons living with AIDS are more at risk for IRIS if they are starting for the first time, or if they have recently been treated for an opportunistic infection (OI). It is generally advised that when patients have low initial CD4 T cell count and opportunistic infection at the time of their HIV diagnosis, they receive treatment to control the opportunistic infections before HAART is initiated approximately two weeks later. This is true for most OIs, except for OIs involving the central nervous system.
Treatment depends on the type of opportunistic infection, but usually involves different antibiotics.
AIP often completely resolves with steroid treatment. The failure to differentiate AIP from malignancy may lead to unnecessary pancreatic resection, and the characteristic lymphoplasmacytic infiltrate of AIP has been found in up to 23% of patients undergoing pancreatic resection for suspected malignancy who are ultimately found to have benign disease. In this subset of patients, a trial of steroid therapy may have prevented a Whipple procedure or complete pancreatectomy for a benign disease which responds well to medical therapy. "This benign disease resembles pancreatic carcinoma both clinically and radiographically. The diagnosis of autoimmune pancreatitis is challenging to make. However, accurate and timely diagnosis may preempt the misdiagnosis of cancer and decrease the number of unnecessary pancreatic resections." Autoimmune pancreatitis responds dramatically to corticosteroid treatment.
If relapse occurs after corticosteroid treatment or corticosteroid treatment is not tolerated, immunomodulators may be used. Immunomodulators such as azathioprine, and 6-mercaptopurine have been shown to extend remission of autoimmune pancreatitis after corticosteroid treatment. If corticosteroid and immunomodulator treatments are not sufficient, rituximab may also be used. Rituximab has been shown to induce and maintain remission.
Treatment may involve surgery, which is currently the only recommended intervention. Surgery should include the removal of even small nodules, to prevent the recurrence of the scrotal calcinosis.
Treatment options in persons without HIV-infection have not been well studied. Intravenous Amphotericin B combined with flucytosine by mouth is recommended.
Persons living with AIDS often have a greater burden of disease and higher mortality (30-70% at 10-weeks), but recommended therapy is with amphotericin B and flucytosine. Where flucytosine is not available (many low and middle income countries), fluconazole should be used with amphotericin. Amphotericin-based induction therapy has much greater microbiologic activity than fluconazole monotherapy with 30% better survival at 10-weeks. Based on a systematic review of existing data, the most cost-effective induction treatment in resource-limited settings appears to be one week of amphotericin B coupled with high-dose fluconazole. After initial induction treatment as above, typical consolidation therapy is with oral fluconazole for at least 8 weeks used with secondary prophylaxis with fluconazole thereafter.
The decision on when to start treatment for HIV appears to be very different than other opportunistic infections. A large multi-site trial supports deferring ART for 4–6 weeks was overall preferable with 15% better 1-year survival than earlier ART initiation at 1–2 weeks after diagnosis. A Cochrane review also supports the delayed starting of treatment until cryptococcosis starts improving with antifungal treatment.
Individuals at higher risk are often prescribed prophylactic medication to prevent an infection from occurring. A patient's risk level for developing an opportunistic infection is approximated using the patient's CD4 T-cell count and sometimes other markers of susceptibility. Common prophylaxis treatments include the following:
The initial response to radiotherapy is often excellent, and may result in a complete remission. However, the duration of response with radiotherapy alone remains short, with median survival after treatment with radiotherapy just 18 months. Methotrexate based chemotherapy markedly improves survival, with some studies showing median survival after methotrexate chemotherapy reaching 48 months.
Treatments for autoimmune disease have traditionally been immunosuppressive, anti-inflammatory, or palliative. Managing inflammation is critical in autoimmune diseases. Non-immunological therapies, such as hormone replacement in Hashimoto's thyroiditis or Type 1 diabetes mellitus treat outcomes of the autoaggressive response, thus these are palliative treatments. Dietary manipulation limits the severity of celiac disease. Steroidal or NSAID treatment limits inflammatory symptoms of many diseases. IVIG is used for CIDP and GBS. Specific immunomodulatory therapies, such as the TNFα antagonists (e.g. etanercept), the B cell depleting agent rituximab, the anti-IL-6 receptor tocilizumab and the costimulation blocker abatacept have been shown to be useful in treating RA. Some of these immunotherapies may be associated with increased risk of adverse effects, such as susceptibility to infection.
Helminthic therapy is an experimental approach that involves inoculation of the patient with specific parasitic intestinal nematodes (helminths). There are currently two closely related treatments available, inoculation with either Necator americanus, commonly known as hookworms, or Trichuris Suis Ova, commonly known as Pig Whipworm Eggs.
T cell vaccination is also being explored as a possible future therapy for autoimmune disorders.
XMEN disease is a rare genetic disorder of the immune system that illustrates the role of Mg2+ in cell signaling. XMEN stands for “X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV) infection, and neoplasia.” It is characterized by CD4 lymphopenia, severe chronic viral infections, and defective T-lymphocyte activation. Investigators in the laboratory of Dr. Michael Lenardo, National Institute of Allergy and Infectious Diseases at the National Institutes of Health first described this condition in 2011.