Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Medium-term (and less well-demonstrated) treatments of hypotension include:
- Blood sugar control (80–150 by one study)
- Early nutrition (by mouth or by tube to prevent ileus)
- Steroid support
The medication midodrine can benefit people with orthostatic hypotension, The main side-effect is piloerection ("goose bumps"). Fludrocortisone is also used, although based on more limited evidence.
A number of other measures have slight evidence to support their use indomethacin, fluoxetine, dopamine antagonists, metoclopramide, domperidone, monoamine oxidase inhibitors with tyramine (can produce severe hypertension), oxilofrine, potassium chloride, and yohimbine.
The treatment for hypotension depends on its cause. Chronic hypotension rarely exists as more than a symptom. Asymptomatic hypotension in healthy people usually does not require treatment. Adding electrolytes to a diet can relieve symptoms of mild hypotension. A morning dose of caffeine can also be effective. In mild cases, where the patient is still responsive, laying the person in dorsal decubitus (lying on the back) position and lifting the legs increases venous return, thus making more blood available to critical organs in the chest and head. The Trendelenburg position, though used historically, is no longer recommended.
Hypotensive shock treatment always follows the first four following steps. Outcomes, in terms of mortality, are directly linked to the speed that hypotension is corrected. Still-debated methods are in parentheses, as are benchmarks for evaluating progress in correcting hypotension. A study on septic shock provided the delineation of these general principles. However, since it focuses on hypotension due to infection, it is not applicable to all forms of severe hypotension.
1. Volume resuscitation (usually with crystalloid)
2. Blood pressure support with a vasopressor (all seem equivalent with respect to risk of death, with norepinephrine possibly better than dopamine). Trying to achieve a mean arterial pressure (MAP) of greater than 70 mmHg does not appear to result in better outcomes than trying to achieve a MAP of greater than 65 mm Hg in adults.
3. Ensure adequate tissue perfusion (maintain SvO2 >70 with use of blood or dobutamine)
4. Address the underlying problem (i.e., antibiotic for infection, stent or CABG (coronary artery bypass graft surgery) for infarction, steroids for adrenal insufficiency, etc...)
The best way to determine if a person will benefit from fluids is by doing a passive leg raise followed by measuring the output from the heart.
Apart from treating underlying reversible causes (e.g., stopping or reducing certain medications), there are a number of measures that can improve the symptoms of orthostatic hypotension and prevent episodes of syncope. Even small increases in the blood pressure may be sufficient to maintain blood flow to the brain on standing.
In people who do not have a diagnosis of high blood pressure, drinking 2–3 liters of fluid a day and taking 10 grams of salt can improve symptoms, by maximizing the amount of fluid in the bloodstream. Another strategy is keeping the head of the bed slightly elevated. This reduces the return of fluid from the limbs to the kidneys at night, thereby reducing nighttime urine production and maintaining fluid in the circulation. Various measures can be used to improve the return of blood to the heart: the wearing of compression stockings and exercises ("physical counterpressure manoeuvres" or PCMs) that can be undertaken just before standing up (e.g., leg crossing and squatting).
Vasopressors may be used if blood pressure does not improve with fluids. There is no evidence of substantial superiority of one vasopressor over another; however, using dopamine leads to an increased risk of arrythmia when compared with norepinephrine. Vasopressors have not been found to improve outcomes when used for hemorrhagic shock from trauma but may be of use in neurogenic shock. Activated protein C (Xigris) while once aggressively promoted for the management of septic shock has been found not to improve survival and is associated with a number of complications. Xigris was withdrawn from the market in 2011, and clinical trials were discontinued. The use of sodium bicarbonate is controversial as it has not been shown to improve outcomes. If used at all it should only be considered if the pH is less than 7.0.
Aggressive intravenous fluids are recommended in most types of shock (e.g. 1–2 liter normal saline bolus over 10 minutes or 20 ml/kg in a child) which is usually instituted as the person is being further evaluated. Which intravenous fluid is superior, colloids or crystalloids, remains undetermined. Thus as crystalloids are less expensive they are recommended. If the person remains in shock after initial resuscitation packed red blood cells should be administered to keep the hemoglobin greater than 100 g/l.
For those with haemorrhagic shock the current evidence supports limiting the use of fluids for penetrating thorax and abdominal injuries allowing mild hypotension to persist (known as permissive hypotension). Targets include a mean arterial pressure of 60 mmHg, a systolic blood pressure of 70–90 mmHg, or until their adequate mentation and peripheral pulses.
POTS treatment involves using multiple methods in combination to counteract cardiovascular dysfunction, address symptoms, and simultaneously address any associated disorders. For most patients, water intake should be increased, especially after waking, in order to expand blood volume (reducing hypovolemia). 8–10 cups of water daily are recommended. Increasing salt intake, by adding salt to food, taking salt tablets, or drinking sports drinks and other electrolyte solutions is an effective way to raise blood pressure by helping the body retain water. Different physicians recommend different amounts of sodium to their patients. Salt intake is not appropriate for people with high blood pressure. Combining these techniques with gradual physical training enhances their effect. In some cases, when increasing oral fluids and salt intake is not enough, intravenous saline or the drug desmopressin is used to help increase fluid retention.
Large meals worsen symptoms for some people. These people may benefit from eating small meals frequently throughout the day instead. Alcohol and food high in carbohydrates can also exacerbate symptoms of orthostatic hypotension. Excessive consumption of caffeine beverages should be avoided, because they can promote urine production (leading to fluid loss) and consequently hypovolemia. Exposure to extreme heat may also aggravate symptoms.
Prolonged physical inactivity can worsen the symptoms of POTS. Techniques that increase a person's capacity for exercise, such as endurance training or graded exercise therapy, can relieve symptoms for some patients. Aerobic exercise performed for 20 minutes a day, three times a week, is sometimes recommended for patients who can tolerate it. Exercise may have the immediate effect of worsening tachycardia, especially after a meal or on a hot day. In these cases, it may be easier to exercise in a semi-reclined position, such as riding a recumbent bicycle, rowing or swimming.
When changing to an upright posture, finishing a meal or concluding exercise, a sustained hand grip can briefly raise the blood pressure, possibly reducing symptoms. Compression garments can also be of benefit by constricting blood pressures with external body pressure.
If nonpharmacological methods are ineffective, medication may be necessary. As of 2013, no medication has been approved by the U.S. Food and Drug Administration to treat POTS, but a variety are used off-label. Their efficacy has not yet been examined in long-term randomized controlled trials.
Fludrocortisone may be used to enhance sodium retention and blood volume which may be beneficial not only by augmenting sympathetically-mediated vasoconstriction but also because a large subset of POTS patients appear to have low absolute blood volume.
While POTS patients typically have normal or even elevated arterial blood pressure, the neuropathic form of POTS is presumed to constitute a selective sympathetic venous denervation. In these patients the selective Alpha-1 Adrenergic receptor agonist Midodrine may increase venous return, enhance stroke volume and improve symptoms. Midodrine should only be taken during the daylight hours as it may promote supine hypertension.
Ivabradine can successfully restrain heart rate in POTS without affecting blood pressure and approximately 60% of POTS patients treated in an open-label trial of ivabradine experienced symptom improvement.
Pyridostigmine has been reported to restrain heart rate and improve chronic symptoms in about half of patients.
The selective alpha 1 agonist phenylephrine has been used successfully to enhance venous return and stroke volume in some people with POTS. However, this medication may be hampered by poor oral bioavailability.
Not required for physiologic sinus tachycardia. Underlying causes are treated if present.
Acute myocardial infarction. Sinus tachycardia can present in more than a third of the patients with AMI but this usually decreases over time. Patients with sustained sinus tachycardia reflects a larger infarct that are more anterior with prominent left ventricular dysfunction, associated with high mortality and morbidity. Tachycardia in the presence of AMI can reduce coronary blood flow and increase myocardial oxygen demand, aggravating the situation. Beta blockers can be used to slow the rate, but most patients are usually already treated with beta blockers as a routine regimen for AMI.
Practically, many studies showed that there is no need for any treatment.
IST and POTS. Beta blockers are useful if the cause is sympathetic overactivity. If the cause is due to decreased vagal activity, it is usually hard to treat and one may consider radiofrequency catheter ablation.
Acute adrenal insufficiency is a medical emergency and needs to be treated with injectable hydrocortisone and fluid support.
Adrenal crisis is triggered by physiological stress (such as trauma). Activities that have an elevated risk of trauma are best avoided. Treatment must be given within two hours of trauma and consequently it is advisable to carry injectable hydrocortisone in remote areas.
IST has been treated both pharmacologically and invasively, with varying degrees of success. IST, in and of itself, is not indicative of higher rates of mortality, and non-treatment is an option chosen by many if they have minimal symptoms.
Some types of medication tried by cardiologists and other physicians include: beta blockers, selective sinus node I channel inhibitors (ivabradine), calcium channel blockers and antiarrhythmic agents. Some SSRI drugs are also occasionally tried and also treatments more commonly used to treat postural orthostatic tachycardia syndrome such as fludrocortisone. This approach is very much "trial-and-error". Patients with IST are often intolerant to beta blockers. A new selective sinus node inhibitor ivabradine is also being used to treat IST.
Invasive treatments include forms of catheter ablation such as sinus node modification (selective ablation of the sinus node), complete sinus node ablation (with associated implantation of a permanent artificial pacemaker) and AV node ablation in very resistant cases (creation of iatrogenic complete heart block, necessitating implantation of a permanent artificial pacemaker).
However invasive treatments can also make the symptoms worse, not cure it. Treatment should be chosen with care as the patient could become in need of a pacemaker or have more extensive symptoms.
The second stage features the reabsorption of the initially extravasated fluid and albumin from the tissues, and it usually lasts 1 to 2 days. Intravascular fluid overload leads to polyuria and can cause flash pulmonary edema and cardiac arrest, with possibly fatal consequences. Death from SCLS typically occurs during this recruitment phase because of pulmonary edema arising from excessive intravenous fluid administration during the earlier leak phase. The severity of the problem depends on to the quantity of fluid supplied in the initial phase, the damage that may have been sustained by the kidneys, and the promptness with which diuretics are administered to help the patient discharge the accumulated fluids quickly. A recent study of 59 acute episodes occurring in 37 hospitalized SCLS patients concluded that high-volume fluid therapy was independently associated with poorer clinical outcomes, and that the main complications of SCLS episodes were recovery-phase pulmonary edema (24%), cardiac arrhythmia (24%), compartment syndrome (20%), and acquired infections (19%).
The prevention of episodes of SCLS has involved two approaches. The first has long been identified with the Mayo Clinic, and it recommended treatment with beta agonists such as terbutaline, phosphodiesterase-inhibitor theophylline, and leukotriene-receptor antagonists montelukast sodium.
The rationale for use of these drugs was their ability to increase intracellular cyclic AMP (adenosine monophosphate) levels, which might counteract inflammatory signaling pathways that induce endothelial permeability. It was the standard of care until the early 2000s, but was sidelined afterwards because patients frequently experienced renewed episodes of SCLS, and because these drugs were poorly tolerated due to their unpleasant side effects.
The second, more recent approach pioneered in France during the last decade (early 2000s) involves monthly intravenous infusions of immunoglobulins (IVIG), with an initial dose of 2 gr/kg/month of body weight, which has proven very successful as per abundant case-report evidence from around the world.
IVIG has long been used for the treatment of autoimmune and MGUS-associated syndromes, because of its potential immunomodulatory and anticytokine properties. The precise mechanism of action of IVIG in patients with SCLS is unknown, but it is likely that it neutralizes their proinflammatory cytokines that provoke endothelial dysfunction. A recent review of clinical experience with 69 mostly European SCLS patients found that preventive treatment with IVIG was the strongest factor associated with their survival, such that an IVIG therapy should be the first-line preventive agent for SCLS patients. According to a recent NIH survey of patient experience, IVIG prophylaxis is associated with a dramatic reduction in the occurrence of SCLS episodes in most patients, with minimal side effects, such that it may be considered as frontline therapy for those with a clear-cut diagnosis of SCLS and a history of recurrent episodes.
While CSWS usually appears within the first week after brain injury and spontaneously resolves in 2–4 weeks, it can sometimes last for months or years. In contrast to the use of fluid restriction to treat SIADH, CSWS is treated by replacing the urinary losses of water and sodium with hydration and sodium replacement. The mineralocorticoid medication fludrocortisone can also improve the low sodium level.
In those that are unstable with a narrow complex tachycardia, intravenous adenosine may be attempted. In all others immediate cardioversion is recommended.
The clinician must protect the patient against hypotension, renal failure, acidosis, hyperkalemia and hypocalcemia. Admission to an intensive care unit, preferably one experienced in trauma medicine, may be appropriate; even well-seeming patients need observation. Treat open wounds as surgically appropriate, with debridement, antibiotics and tetanus toxoid; apply ice to injured areas.
Intravenous hydration of up to 1.5 L/hour should continue to prevent hypotension. A urinary output of at least 300 ml/hour should be maintained with IV fluids and mannitol, and hemodialysis considered if this amount of diuresis is not achieved. Use intravenous sodium bicarbonate to keep the urine pH at 6.5 or greater, to prevent myoglobin and uric acid deposition in kidneys.
To prevent hyperkalemia/hypocalcemia, consider the following adult doses:
- calcium gluconate 10% 10ml or calcium chloride 10% 5 ml IV over 2 minutes
- sodium bicarbonate 1 meq/kg IV slow push
- regular insulin 5–10 U
- 50% glucose 1–2 ampules IV bolus
- kayexalate 25–50 g with sorbitol 20% 100 ml by mouth or rectum.
Even so, cardiac arrhythmias may develop; electrocardiographic monitoring is advised, and specific treatment begun promptly.
The initial stage is the capillary leak phase, lasting from 1 to 3 days, during which up to 70% of total plasma volume may invade cavities especially in the extremities. The most common clinical features are flu-like symptoms such as fatigue; runny nose; lightheadedness up to and including syncope (fainting); limb, abdominal or generalized pain; facial or other edema; dyspnea; and hypotension that results in circulatory shock and potentially in cardiopulmonary collapse and other organ distress or damage. Acute renal dysfunction or failure is a common risk due to acute tubular necrosis consequent to hypovolemia and rhabdomyolysis.
The loss of fluid out of the capillaries has similar effects on the circulation as dehydration, slowing both the flow of oxygen delivered to tissues and organs as well as the output of urine. Urgent medical attention in this phase consists of fluid resuscitation efforts, mainly the intravenous administration of saline solution plus hetastarch or albumin and colloids (to increase the remaining blood flow to vital organs like the kidneys), as well as glucocorticoids (steroids like methylprednisolone, to reduce or stop the capillary leak). However effective on blood pressure, the impact of fluid therapy is always transient and leads to increased extravascular fluid accumulation, engendering multiple complications especially compartment syndrome and thus limb-destructive rhabdomyolysis. Consequently, patients experiencing episodes of SCLS should be closely monitored in a hospital intensive-care setting, including for orthopedic complications requiring surgical decompression, and their fluid therapy should be minimized as much as possible.
Diet alone cannot treat pacemaker syndrome, but an appropriate diet to the patient, in addition to the other treatment regimens mentioned, can improve the patient's symptoms. Several cases mentioned below:
- For patients with heart failure, low-salt diet is indicated.
- For patients with autonomic insufficiency, a high-salt diet may be appropriate.
- For patients with dehydration, oral fluid rehydration is needed.
The tilt table test is an evaluative clinical test to help identify postural hypotension, a common cause of presyncope or syncope. A tilt angle of 60 and 70 degrees is optimal and maintains a high degree of specificity. A positive sign with the tilt table test must be taken in context of patient history, with consideration of pertinent clinical findings before coming to a conclusion.
Transfusion associated circulatory overload is prevented by avoiding unnecessary transfusions, closely monitoring patients receiving transfusions, transfusing smaller volumes of blood at a slower rate, and considering the use of diuretics. A pre-transfusion TACO checklist can be used to assess patients' risk of developing TACO.
No specific drugs are used to treat pacemaker syndrome directly because treatment consists of upgrading or reprogramming the pacemaker.
Since the conversion of dihydroxyphenylserine (Droxidopa; trade name: Northera; also known as L-DOPS, L-threo-dihydroxyphenylserine, L-threo-DOPS and SM-5688), to norepinephrine bypasses the dopamine beta-hydroxylation step of catecholamine synthesis, L-Threo-DOPS is the ideal therapeutic agent. In humans with DβH deficiency, L-Threo-DOPS, a synthetic precursor of noradrenaline, administration has proven effective in dramatic increase of blood pressure and subsequent relief of postural symptoms.
L-DOPS continues to be studied pharmacologically and pharmacokinetically and shows an ability to increase the levels of central nervous system norepinephrine by a significant amount. This is despite the fact that L-DOPS has a relative difficulty crossing the blood-brain barrier when compared to other medications such as L-DOPA. When used concurrently, there is evidence to show that there is increased efficacy as they are both intimately involved and connected to the pathway in becoming norepinephrine.
There is hope and evidence that L-DOPS can be used much more widely to help other conditions or symptoms such as pain, chronic stroke symptoms, and progressive supranuclear palsy, amongst others. Clinically, L-DOPS has been already shown to be helpful in treating a variety of other conditions related to hypotension including the following:
- Diabetes induced orthostatic hypotension
- Dialysis-induced hypotension
- Orthostatic intolerance
- Familial amyloidotic polyneuropathy
- Spinal Cord Injury related hypotension
Empirical evidence of mild effectiveness has been reported using mineralocorticoids or adrenergic receptor agonists as therapies.
Other medications that can bring relief to symptoms include:
- phenylpropanolamine- due to pressor response to vascular α-adrenoceptors
- indomethacin
Vitamin C (ascorbic acid) is also a required cofactor for the Dopamine beta hydroxylase enzyme. Recent research has shown that vitamin C rapidly catalyzes the conversion of dopamine to norepinephrine through stimulation of the dopamine beta hydroxylase enzyme.
AV reentrant tachycardia (AVRT) requires an accessory pathway for its maintenance. AVRT may involve orthodromic conduction (where the impulse travels down the AV node to the ventricles and back up to the atria through the accessory pathway) or antidromic conduction (which the impulse travels down the accessory pathway and back up to the atria through the AV node). Orthodromic conduction usually results in a narrow complex tachycardia, and antidromic conduction usually results in a wide complex tachycardia that often mimics ventricular tachycardia. Most antiarrhythmics are contraindicated in the emergency treatment of AVRT, because they may paradoxically increase conduction across the accessory pathway.
Principles of management are to treat the shock and replace the uterus. The patient should be moved rapidly to the OR to facilitate anesthesia monitoring during this procedure. Usually this complication is only recognized after delivery of the placenta, wherein pitocin has already been started, which just exacerbates the problem. The uterus clamps down around the inversion making it very difficult to perform a replacement. This is a true obstetrical emergency, so extra doctors, nurses, anesthesiologists should be summoned to the room to assist. The pitocin should be turned off immediately. Giving tocolytics such as terbutaline or magnesium sulfate have a lower success rate. Halothane and Nitroglycerine (100mcg to 200 mcg intravenously) have a higher success rate.
Once you have achieved uterine relaxation, place your fist into the vagina. Find the biggest part of the inversion and push with your fist cephalward to replace the uterus. This takes firm steady force, so keep your fist in the vagina if you need to rest your hand. Then continue more force toward the fundus to replace the uterus. You can use your left hand on the outside of the abdomen to help you feel where the fundus should be replaced. This helps guide the angle of your fist in replacing the uterus. Once it is replaced, give the patient Misoprostol 1000 mcgs rectally to help with increasing uterine tone. Other medications such as Methergine and Hemabate can be used. If you have heavy bleeding, consider inserting a Bakri balloon into the uterine cavity to tamponade the bleeding.
These patients have usually sustained heavy blood loss, and should be monitored in the ICU postoperatively. If you have given nitroglycerine, they must have cardiac monitoring postoperatively.
Other personnel should be monitoring vital signs, ordering blood products, assisting the anesthesiologist, drawing labs, and stabilizing the patient. Remember that nitroglycerine can cause hypotension, which can be reversed with ephedrine.
If external replacement fails, a laparotomy may be required, in which the uterus is gently pulled the right way round using forceps.
As mentioned, permissive hypotension is unwise. Especially if the crushing weight is on the patient more than 4 hours, but often if it persists more than one hour, careful fluid overload is wise, as well as the administration of intravenous sodium bicarbonate. The San Francisco emergency services protocol calls for a basic adult dose of a 2 L bolus of normal saline followed by 500 ml/h, limited for "pediatric patients and patients with history of cardiac or renal dysfunction."
If the patient cannot be fluid loaded, this may be an indication for a tourniquet to be applied.