Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Without life-prolonging interventions, HLHS is fatal, but with intervention, an infant may survive. A cardiothoracic surgeon may perform a series of operations or a full heart transplant. While surgical intervention has emerged as the standard of care in the United States, other national health systems, notably in France, approach diagnosis of HLHS in a more conservative manner, with an emphasis on termination of pregnancy or compassionate care after delivery.
Before surgery, the ductus must be kept open to allow blood-flow using medication containing prostaglandin. Air with less oxygen than normal is used for infants with hypoplastic left heart syndrome. These low oxygen levels increases the pulmonary vascular resistance (PVR) and thus improve blood flow to the rest of the body, due to the greater pressure difference between the lungs and body. Achieving oxygen levels below atmosphere requires the use of inhaled nitrogen. Nitric oxide is a potent pulmonary vasodilator, and thus reduces PVR and improves venous return. Any factor that increases PVR will impede right sided flow.
The treatment of pulmonary atresia consists of: an IV medication called prostaglandin E1, which is used for treatment of pulmonary atresia, as it stops the ductus arteriosus from closing, allowing mixing of the pulmonary and systemic circulations, but prostaglandin E1 can be dangerous as it can cause apnea. Another example of preliminary treatment is heart catheterization to evaluate the defect or defects of the heart; this procedure is much more invasive. Ultimately, however, the individual will need to have a series of surgeries to improve the blood flow permanently. The first surgery will likely be performed shortly after birth. A shunt can be created between the aorta and the pulmonary artery to help increase blood flow to the lungs. As the child grows, so does the heart and the shunt may need to be revised in order to meet the body's requirements.
The type of surgery recommended depends on the size of the right ventricle and the pulmonary artery, if the right ventricle is small and unable to act as a pump, the surgery performed would be the Fontan procedure. In this three-stage procedure, the right atrium is disconnected from the pulmonary circulation. The systemic venous return goes directly to the lungs, by-passing the heart.Very young children with elevated pulmonary vascular resistance may not able to undergo the Fontan procedure. Cardiac catheterization may be done to determine the resistance before going ahead with the surgery.
Treatment is with neonatal surgical repair, with the objective of restoring a normal pattern of blood flow. The surgery is open heart, and the patient will be placed on cardiopulmonary bypass to allow the surgeon to work on a still heart. The heart is opened and the ventricular septal defect is closed with a patch. The pulmonary arteries are then detached from the common artery (truncus arteriosus) and connected to the right ventricle using a tube (a conduit or tunnel). The common artery, now separated from the pulmonary circulation, functions as the aorta with the truncal valve operating as the aortic valve. Most babies survive this surgical repair, but may require further surgery as they grow up. For example, the conduit does not grow with the child and may need to be replaced as the child grows. Furthermore, the truncal valve is often abnormal and may require future surgery to improve its function.
There have been cases where the condition has been diagnosed at birth and surgical intervention is an option. A number of these cases have survived well into adulthood.
Tet spells may be treated with beta-blockers such as propranolol, but acute episodes require rapid intervention with morphine or intranasal fentanyl to reduce ventilatory drive, a vasopressor such as phenylephrine, or norepinephrine to increase systemic vascular resistance, and IV fluids for volume expansion.
Oxygen (100%) may be effective in treating spells because it is a potent pulmonary vasodilator and systemic vasoconstrictor. This allows more blood flow to the lungs by decreasing shunting of deoxygenated blood from the right to left ventricle through the VSD. There are also simple procedures such as squatting and the knee chest position which increase systemic vascular resistance and decrease right-to-left shunting of deoxygenated blood into the systemic circulation.
Surgical treatment involves resection of the stenosed segment and re-anastomsis. Two complications specific to this surgery are Left recurrent nerve palsy and chylothorax, as the recurrent laryngeal nerve and thoracic duct are in the vicinity. Chylothorax is a troublesome complication and is usually managed conservatively by adjusting the diet to eliminate long chain fatty acids and supplementing medium chain triglycerides. When conservative management fails surgical intervention is required. Fluorescein dye can aid in the localisation of chyle leak.
Some evidence suggests that indomethacin administration on the first day of life to all preterm infants reduces the risk of developing a PDA and the complications associated with PDA. Indomethacin treatment in premature infants also may reduce the need for surgical intervention.
Neonates without adverse symptoms may simply be monitored as outpatients, while symptomatic PDA can be treated with both surgical and non-surgical methods. Surgically, the DA may be closed by ligation (though support in premature infants is mixed), either manually tied shut, or with intravascular coils or plugs that leads to formation of a thrombus in the DA.
Devices developed by Franz Freudenthal block the blood vessel with woven structures of nitinol wire.
Because prostaglandin E2 is responsible for keeping the DA open, NSAIDS (which can inhibit prostaglandin synthesis) such as indomethacin or a special form of ibuprofen have been used to initiate PDA closure. Recent findings from a systematic review concluded that, for closure of a PDA in preterm and/or low birth weight infants, ibuprofen is as effective as Indomethacin. It also causes fewer side effects (such as transient renal insufficiency) and reduces the risk of necrotising enterocolitis. Another recent review showed that paracetamol may be effective for closure of a PDA in preterm infants.
More recently, PDAs can be closed by percutaneous interventional method (avoiding open heart surgery). A platinum coil can be deployed via a catheter through the femoral vein or femoral artery, which induces thrombosis (coil embolization). Alternatively, a PDA occluder device , composed of nitinol mesh, is deployed from the pulmonary artery through the PDA.
Sometimes CHD improves without treatment. Other defects are so small that they do not require any treatment. Most of the time CHD is serious and requires surgery and/or medications. Medications include diuretics, which aid the body in eliminating water, salts, and digoxin for strengthening the contraction of the heart. This slows the heartbeat and removes some fluid from tissues. Some defects require surgical procedures to restore circulation back to normal and in some cases, multiple surgeries are needed.
Interventional cardiology now offers patients minimally invasive alternatives to surgery for some patients. The Melody Transcatheter Pulmonary Valve (TPV), approved in Europe in 2006 and in the U.S. in 2010 under a Humanitarian Device Exemption (HDE), is designed to treat congenital heart disease patients with a dysfunctional conduit in their right ventricular outflow tract (RVOT). The RVOT is the connection between the heart and lungs; once blood reaches the lungs, it is enriched with oxygen before being pumped to the rest of the body. Transcatheter pulmonary valve technology provides a less-invasive means to extend the life of a failed RVOT conduit and is designed to allow physicians to deliver a replacement pulmonary valve via a catheter through the patient’s blood vessels.
Most patients require lifelong specialized cardiac care, first with a pediatric cardiologist and later with an adult congenital cardiologist. There are more than 1.8 million adults living with congenital heart defects.
Acute decompensated heart failure due to AS may be temporarily managed by an intra-aortic balloon pump while pending surgery. In those with high blood pressure nitroprusside may be carefully used. Phenylephrine may be used in those with very low blood pressure.
Surgical operations to assist with hypoplastic left heart are complex and need to be individualized for each patient. A cardiologist must assess all medical and surgical options on a case-by-case basis.
Currently, infants undergo either the staged reconstructive surgery (Norwood or Sano procedure within a few days of birth, Glenn or "Hemi-Fontan procedure" at 3 to 6 months of age, and the Fontan procedure at 1 1/2 to 5 years of age) or cardiac transplantation. Current expectations are that 70% of those with HLHS will reach adulthood. Many studies show that the higher the volume (number of surgeries performed) at a hospital, the lower the mortality (death) rate. Factors that increase an infant's risk include lower birth weight, additional congenital anomalies, a genetic syndrome or those with a highly restrictive atrial septum.) For patients without these additional risk factors, 5 year survival now approaches 80%. Further, studies show that about 50% of those children who survived surgery in the early development of staged reconstruction have developmental delay or need special education; about 25% of these surgical survivors have severe disabilities. There is growing evidence that while the incidence of developmental and behavioral disabilities continues to be higher than that in the general population, children operated upon in the more current era have shown significantly better neurological outcomes. An alternative to the traditional Norwood is the Hybrid procedure.
Some physicians offer "compassionate care", instead of the surgeries, which results in the child's death, usually within 2 weeks of birth. Compassionate care is overseen by a physician, and may be carried out either in the hospital or at home. However, due to the vast improvement of surgical intervention, with many hospitals achieving over 90% survival, there is debate on whether or not "compassionate care" should still be offered to families. A study in 2003 concluded that a selection of physicians who are experts in the care of children with HLHS were evenly split when asked what they would do if their own children were born with HLHS, with 1/3 stating that they would choose surgery, 1/3 stating that they would choose palliative (compassionate) treatment without surgery, and 1/3 stating that they are uncertain which choice they would make.
The three-stage procedure is a palliative procedure (not a cure), as the child's circulation is made to work with only two of the heart's four chambers.
The Blalock-Thomas-Taussig procedure, initially the only surgical treatment available for tetralogy of Fallot, was palliative but not curative. The first total repair of tetralogy of Fallot was done by a team led by C. Walton Lillehei at the University of Minnesota in 1954 on an 11-year-old boy. Total repair on infants has had success from 1981, with research indicating that it has a comparatively low mortality rate.
Total repair of tetralogy of Fallot initially carried a high mortality risk, but this risk has gone down steadily over the years. Surgery is now often carried out in infants one year of age or younger with less than 5% perioperative mortality. The open-heart surgery is designed to relieve the right ventricular outflow tract stenosis by careful resection of muscle and to repair the VSD with a Gore-Tex patch or a homograft.> Additional reparative or reconstructive surgery may be done on patients as required by their particular cardiac anatomy.
For infants and children, balloon valvuloplasty, where a balloon is inflated to stretch the valve and allow greater flow, may also be effective. In adults, however, it is generally ineffective, as the valve tends to return to a stenosed state. The surgeon will make a small incision at the top of the person's leg and proceed to insert the balloon into the artery. The balloon is then advanced up to the valve and is inflated to stretch the valve open.
When PGE is administered to a newborn, it prevents the ductus arteriosus from closing, therefore providing an additional shunt through which to provide the systemic circulation with a higher level of oxygen.
Antibiotics may be administered preventatively. However, due to the physical strain caused by uncorrected d-TGA, as well as the potential for introduction of bacteria via arterial and central lines, infection is not uncommon in pre-operative patients.
Diuretics aid in flushing excess fluid from the body, thereby easing strain on the heart.
Analgesics normally are not used pre-operatively, but they may be used in certain cases. They are occasionally used partially for their sedative effects.
Cardiac glycosides are used to maintain proper heart rhythm while increasing the strength of each contraction.
Sedatives may be used palliatively to prevent a young child from thrashing about or pulling out any of their lines.
MR Imaging is best suited to evaluate patients with Shone's complex. Routine blood tests should be done prior to cardiac catheterization. The surgeons will repair the mitral valve and al the partial surgical removal of supramitral ring is done. This surgical method is preferred to the valve replacement procedure.
Classifying cardiac lesions in infants is quite difficult, and accurate diagnosis is essential. The diagnosis of Shone’s complex requires an ultrasound of the heart (echocardiogram) and a cardiac catheterization procedure, that is, insertion of a device through blood vessels in the groin to the heart that helps identify heart anatomy.
In adults and children found to have coarctation, treatment is conservative if asymptomatic, but may require surgical resection of the narrow segment if there is arterial hypertension. The first operations to treat coarctation were carried out by Clarence Crafoord in Sweden in 1944. In some cases angioplasty can be performed to dilate the narrowed artery, with or without the placement of a stent graft.
For fetuses at high risk for developing coarctation, a novel experimental treatment approach is being investigated, wherein the mother inhales 45% oxygen three times a day (3 x 3–4 hours) beyond 34 weeks of gestation. The oxygen is transferred via the placenta to the fetus and results in dilatation of the fetal lung vessels. As a consequence, the flow of blood through the fetal circulatory system increases, including that through the underdeveloped arch. In suitable fetuses, marked increases in aortic arch dimensions have been observed over treatment periods of about two to three weeks.
The long term outcome is very good. Some patients may, however, develop narrowing (stenosis) or dilatation at the previous coarctation site. All patients with unrepaired or repaired aortic coarctation require follow up in specialized Congenital Heart Disease centers.
When treated early, that is, before the onset of pulmonary hypertension, a good outcome is possible in patients with Shone’s syndrome. However, other surgical methods can be employed depending upon the patient’s medical background. The single most important determinant of poor outcome during the surgical management of patients with Shone's syndrome is the degree of involvement of the mitral valve and the presence of secondary pulmonary hypertension.
An NG tube is used to deliver nourishment, and occasionally medication, to the patient. Since the tube extends right into the stomach, it can also be used to monitor how well the patient is digesting their "food". Paediatric units normally provide facilities and equipment for mothers of infant patients to pump their breastmilk, which can then be fed to the infant through the NG tube, and/or stored for later use.
Oxygen therapy is commonplace for hospitalized d-TGA patients. This may range from an oxygen mask resting on the bed nearby their head to intubation. In some cases, patients are intubated as a precaution; the machine can monitor breathing and supplement the patient as much or as little as they need.
IV's are used to deliver medication, blood products, or other fluids to the patient. Arterial lines provide a constant monitor of blood pressure, as well as a method of obtaining samples for blood gas tests; central lines can also monitor blood pressure and provide blood samples, as well as provide a means to deliver medication and nourishment; fingerpricks (or heelpricks on small babies) are used to obtain blood samples for certain tests.
A sphygmomanometer may be used for intermittent blood pressure monitoring even if a patient is being otherwise monitored using a central or arterial line.
A pulse oximeter is attached to a finger or toe and provides constant or intermittent monitoring of the blood's oxygen saturation level.
An EKG creates a visual readout of how well the heart rhythm is functioning.
There is no cure for hypoplastic right heart syndrome. A three-stage surgical procedure is commonly used to treat the condition. The surgeries rearrange the blood flow within the heart and allow the left ventricles to do the work for the underdeveloped right side of the heart. The three surgeries are spread out over the patients first few years of life. The first procedure, called the Norwood procedure, is typically done within the first few days or weeks of life. The second procedure, called the Glenn procedure, is usually performed between four and twelve months of age. The last surgery, known as the Fontan procedure, is typically performed between the ages of 18 months and three years. These surgeries change the blood flow to the lungs so that there is always oxygenated blood. The surgeries are a temporary fix from 15–30 years in which a patient will have to have a heart transplant.[3]
In a stage 1 Norwood procedure for hypoplastic right heart, the main pulmonary artery is separated from the left and right portions of the pulmonary artery and joined with the upper portion of the aorta.[7] The proximal pulmonary artery is connected to the hypoplastic aortic arch, while the narrowed segment of the aorta is repaired. An aortopulmonary shunt is created to connect the aorta to the main pulmonary artery to provide pulmonary blood flow to the lungs.[7] The Glen procedure disconnects the superior vena cava from the heart and connects it to the right pulmonary artery so deoxygenated blood from the upper body goes directly to the lungs.[10] The Fontan procedure done usually after the patient is two years old, disconnects the inferior vena cava from the heart and connects it directly with the other pulmonary artery so that deoxygenated blood from the lower body then is sent directly to the lungs.[1]
Simple l-TGA has a very good prognosis, with many individuals being asymptomatic and not requiring surgical correction.
In a number of cases, the (technically challenging) "double switch operation" has been successfully performed to restore the normal blood flow through the ventricles.
The prognosis for pulmonary atresia varies for every child, if the condition is left uncorrected it may be fatal, but the prognosis has greatly improved over the years for those with pulmonary atresia. Some factors that affect how well the child does include how well the heart is beating, and the condition of the blood vessels that supply the heart. Most cases of pulmonary atresia can be helped with surgery, if the patient's right ventricle is exceptionally small, many surgeries will be needed in order to help stimulate normal circulation of blood to the heart.If uncorrected, babies with this type of congenital heart disease may only survive for the first few days of life. Many children with pulmonary atresia will go on to lead normal lives, though complications such as endocarditis, stroke and seizures are possible.
After the surgery, some patients require intubation and mechanical ventilation for several days to allow adequate tracheal toilet, but most patients can have the tubes removed soon after the surgery. The obstructive airway symptoms may be worse in the first postoperative weeks. Only a few patients have immediate relief of stridor, but many obtain immediate relief of problems with swallowing (dysphagia). After extubation, it might be necessary to maintain positive airway pressure by appropriate flows of a humidified oxygen/air mixture.
The procedure is performed in general anesthesia. It is useful to place pulse oximeter probes on "both hands" and "one foot" so that test occlusion of one arch or its branches will allow confirmation of the anatomy. In addition blood pressure cuffs should also be placed on one leg and both arms to confirm the absence of a pressure gradient when the intended point of division of the lesser arch is temporarily occluded with forceps.
Treatment consists of open heart surgery soon after birth. Awaiting surgery, prostaglandin can be administered to keep the ductus arteriosus open, thereby allowing blood flow to the lower body. Failure to treat the condition yields a mortality rate of 90% at a median age of 4 days.
The primary goal of medications is to relieve symptoms such as chest pain, shortness of breath, and palpitations. Beta blockers are considered first-line agents, as they can slow down the heart rate and decrease the likelihood of ectopic beats. For people who cannot tolerate beta blockers, nondihydropyridine calcium channel blockers such as verapamil can be used, but are potentially harmful in people who also have low blood pressure or severe shortness of breath at rest. These medications also decrease the heart rate, though their use in people with severe outflow obstruction, elevated pulmonary artery wedge pressure, and low blood pressures should be done with caution. Dihydropyridine calcium channel blockers should be avoided in people with evidence of obstruction. For people whose symptoms are not relieved by the above treatments, disopyramide can be considered for further symptom relief. Diuretics can be considered for people with evidence of fluid overload, though cautiously used in those with evidence of obstruction. People who continue to have symptoms despite drug therapy can consider more invasive therapies. Intravenous phenylephrine (or another pure vasoconstricting agent) can be used in the acute setting of low blood pressure in those with obstructive hypertrophic cardiomyopathy who do not respond to fluid administration.
The Norwood procedure is a procedure to correct fetal aortic stenosis that occurs after birth. This typically consists of three surgeries creating and removing shunts. The atrial septum is removed, the aortic arch is reconstructed to remove any hypoplasia, and then the main pulmonary artery is connected into this reconstructed arch, resulting in the right ventricle ejecting directly into systemic circulation. In the end, the right ventricle is pumping blood to systemic circulation and to the lungs. However, this procedure carries a very high risk of failure and the patient will likely require a heart transplant.
Another treatment option is to correct the stenosis in utero. In this procedure, fetal positioning is crucial. It is important that the left chest is located anteriorly, and that there are no limbs between the uterine wall and the apex of the left ventricle. The LV apex needs to be within 9 cm of the abdominal wall and the left ventricle outflow track has to be parallel to the intended cannula course in order for the wire to be blindly directed at the aortic valve. A 11.5 cm long, 19-gauge cannula and stylet needle passes through the mother’s abdomen, uterine wall, and fetal chest wall into the left ventricle of the fetus. Then a 0.014 inch guide wire is passed across the stenosis aortic valve, where a balloon is inflated to stretch the aortic annulus.
An alternative to the Norwood procedure is known as the hybrid procedure, was developed in 2008. In the hybrid procedure, bilateral pulmonary artery bands are positioned to limit pulmonary flow while, at the same time, placing a stent in the ductus arteriosus to hold it open. This maintains the connection between the aorta and the systemic circulation. A balloon atrial septostomy is also done. This ensures that there is enough of a connection between the two atria of the heart to provide open blood flow and mixing of oxygen rich and poor blood This procedure spares the baby from undergoing open heart surgery until they are older. They typically come back at 4–6 months of age when they are stronger for the open heart surgery.