Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment of toxic and nutritional optic neuropathy is dictated by the cause of the disorder.
- Toxic optic neuropathy is treated by identification and removal of the offending agent. Depending upon the individual affected, the nature of the agent, total exposure prior to removal, and degree of vision loss at the time of diagnosis, the prognosis is variable.
- Nutritional optic neuropathy is treated with improved nutrition. A well-balanced diet with plenty of protein and green leafy vegetables, vitamin supplementation (thiamine, vitamin B, folic acid, multivitamins), and reduction of smoking and/or drinking are the mainstay of treatment. Again, prognosis is variable and dependent upon the affected individual, treatment compliance, and degree of vision loss at diagnosis.
In both toxic and nutritional neuropathy, vision generally recovers to normal over several days to weeks, though it may take months for full restoration and there is always the risk of permanent vision loss. Visual acuity usually recovers before color vision.
Intraocular pressure can be lowered with medication, usually eye drops. Several classes of medications are used to treat glaucoma, with several medications in each class.
Each of these medicines may have local and systemic side effects. Adherence to medication protocol can be confusing and expensive; if side effects occur, the patient must be willing either to tolerate them or to communicate with the treating physician to improve the drug regimen. Initially, glaucoma drops may reasonably be started in either one or in both eyes. Wiping the eye with an absorbent pad after the administration of eye drops may result in fewer adverse effects, like the growth of eyelashes and hyperpigmentation in the eyelid.
Poor compliance with medications and follow-up visits is a major reason for vision loss in glaucoma patients. A 2003 study of patients in an HMO found half failed to fill their prescriptions the first time, and one-fourth failed to refill their prescriptions a second time. Patient education and communication must be ongoing to sustain successful treatment plans for this lifelong disease with no early symptoms.
The possible neuroprotective effects of various topical and systemic medications are also being investigated.
- Prostaglandin analogs, such as latanoprost, bimatoprost and travoprost, increase uveoscleral outflow of aqueous humor. Bimatoprost also increases trabecular outflow.
- Topical beta-adrenergic receptor antagonists, such as timolol, levobunolol, and betaxolol, decrease aqueous humor production by the epithelium of the ciliary body.
- Alpha2-adrenergic agonists, such as brimonidine and apraclonidine, work by a dual mechanism, decreasing aqueous humor production and increasing uveoscleral outflow.
- Less-selective alpha agonists, such as epinephrine, decrease aqueous humor production through vasoconstriction of ciliary body blood vessels, useful only in open-angle glaucoma. Epinephrine's mydriatic effect, however, renders it unsuitable for closed-angle glaucoma due to further narrowing of the uveoscleral outflow (i.e. further closure of trabecular meshwork, which is responsible for absorption of aqueous humor).
- Miotic agents (parasympathomimetics), such as pilocarpine, work by contraction of the ciliary muscle, opening the trabecular meshwork and allowing increased outflow of the aqueous humour. Echothiophate, an acetylcholinesterase inhibitor, is used in chronic glaucoma.
- Carbonic anhydrase inhibitors, such as dorzolamide, brinzolamide, and acetazolamide, lower secretion of aqueous humor by inhibiting carbonic anhydrase in the ciliary body.
Galactosemic infants present clinical symptoms just days after the onset of a galactose diet. They include difficulty feeding, diarrhea, lethargy, hypotonia, jaundice, cataract, and hepatomegaly (enlarged liver). If not treated immediately, and many times even with treatment, severe mental retardation, verbal dyspraxia (difficulty), motor abnormalities, and reproductive complications may ensue. The most effective treatment for many of the initial symptoms is complete removal of galactose from the diet. Breast milk and cow's milk should be replaced with soy alternatives. Infant formula based on casein hydrolysates and dextrin maltose as a carbohydrate source can also be used for initial management, but are still high in galactose. The reason for long-term complications despite a discontinuation of the galactose diet is vaguely understood. However, it has been suggested that endogenous (internal) production of galactose may be the cause.
The treatment for galactosemic cataract is no different from general galactosemia treatment. In fact, galactosemic cataract is one of the few symptoms that is actually reversible. Infants should be immediately removed from a galactose diet when symptoms present, and the cataract should disappear and visibility should return to normal. Aldose reductase inhibitors, such as sorbinil, have also proven promising in preventing and reversing galactosemic cataracts. AR inhibitors hinder aldose reductase from synthesizing galactitol in the lens, and thus restricts the osmotic swelling of the lens fibers. Other AR inhibitors include the acetic acid compounds zopolrestat, tolrestat, alrestatin, and epalrestat. Many of these compounds have not been successful in clinical trials due to adverse pharmokinetic properties, inadequate efficacy and efficiency, and toxic side effects. Testing on such drug-treatments continues in order to determine potential long-term complications, and for a more detailed mechanism of how AR inhibitors prevent and reverse the galactosemic cataract.
Several options exist for the treatment of BRVO. These treatments aim for the two of the most significant complications of BRVO, namely macular edema and neovascularization.
- Systemic treatment with oral Aspirin, subcutaneous Heparin, or intravenous thrombolysis have not been shown to be effective treatments for CRVO and for BRVO no reliable clinical trial has been published.
- Laser treatment of the macular area to reduce macular edema is indicated in patients who have 20/40 or worse vision and did not spontaneously improve for at least 3 months (to permit the maximum spontaneous resolution) after the development of the vein occlusion. It is typically administered with the argon laser and is focused on edematous retina within the arcades drained by the obstructed vein and avoiding the foveal avascular zone. Leaking microvascular abnormalities may be treated directly, but prominent collateral vessels should be avoided.
- The second indication of laser treatment is in case of neovascularization. Retinal photocoagulation is applied to the involved retina to cover the entire involved segment, extending from the arcade out to the periphery. Ischemia alone is not an indication for treatment provided that follow-up could be maintained.
- Preservative-free, nondispersive Triamcinolone acetonide in 1 or 4 mg dosage may be injected into the vitreous to treat macular edema but has complications including elevated intraocular pressure and development of cataract. Triamcinolone injection is shown to have similar effect on visual acuity when compared with standard care (Laser therapy), However, the rates of elevated intraocular pressure and cataract formation is much higher with the triamcinolone injection, especially the higher dosage. Intravitreal injection of Dexamethasone implant (Ozurdex; 700,350 μg) is being studied, its effect may last for 180 days. The injection may be repeated however with less pronounced effect. Although the implant was designed to cause less complications, pressure rise and cataract formation is noted with this treatment too.
- Anti-VEGF drugs such as Bevacizumab (Avastin; 1.25 -2.5 mg in 0.05ml) and Ranibizumab (lucentis) injections are being used and investigated. Intravitreal anti-VEGFs have a low incidence of adverse side effects compared with intravitreal corticosteroids, but are currently short acting requiring frequent injections. Anti-VEGF injection may be used for macular edema or neovascularization. The mechanism of action and duration of anti-VEGF effect on macular edema is currently unknown. The intraocular levels of VEGF are increased in eyes with macular edema secondary to BRVO and the elevated VEGF levels are correlated to the degree and severity of the areas of capillary nonperfusion and macular edema.
- Surgery is employed occasionally for longstanding vitreous hemorrhage and other serious complications such as epiretinal membrane and retinal detachment.
- Arteriovenous sheathotomy has been reported in small, uncontrolled series of patients with BRVO. BRVO typically occurs at arteriovenous crossings, where the artery and vein share a common adventitial sheath. In arteriovenous sheathotomy an incision is made in the adventitial sheath adjacent to the arteriovenous crossing and is extended along the membrane that holds the blood vessels in position to the point where they cross, the overlying artery is then separated from the vein.
In general, the younger the child, the greater the urgency in removing the cataract, because of the risk of amblyopia. For optimal visual development in newborns and young infants, a visually significant unilateral congenital cataract should be detected and removed before age 6 weeks, and visually significant bilateral congenital cataracts should be removed before age 10 weeks.
Some congenital cataracts are too small to affect vision, therefore no surgery or treatment will be done. If they are superficial and small, an ophthalmologist will continue to monitor them throughout a patient's life. Commonly, a patient with small congenital cataracts that do not affect vision will eventually be affected later in life; generally this will take decades to occur.
TCAs include imipramine, amitriptyline, desipramine, and nortriptyline. They are generally regarded as first or second-line treatment for DPN. Of the TCAs, imipramine has been the best studied. These medications are effective at decreasing painful symptoms but suffer from multiple side effects that are dose-dependent. One notable side effect is cardiac toxicity, which can lead to fatal abnormal heart rhythms. Additional common side effects include dry mouth, difficulty sleeping, and sedation. At low dosages used for neuropathy, toxicity is rare, but if symptoms warrant higher doses, complications are more common. Among the TCAs, amitriptyline is most widely used for this condition, but desipramine and nortriptyline have fewer side effects.
Cryotherapy (freezing) or laser photocoagulation are occasionally used alone to wall off a small area of retinal detachment so that the detachment does not spread.
Patients usually do not require treatment due to benign nature of the disease. In case cataract develops patients generally do well with cataract surgery.
Except for tight glucose control, treatments are for reducing pain and other symptoms.
Medication options for pain control include antiepileptic drugs (AEDs), serotonin-norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), and capsaicin cream. About 10% of people who use capsaicin cream have a large benefit.
A systematic review concluded that "tricyclic antidepressants and traditional anticonvulsants are better for short term pain relief than newer generation anticonvulsants." A further analysis of previous studies showed that the agents carbamazepine, venlafaxine, duloxetine, and amitriptyline were more effective than placebo, but that comparative effectiveness between each agent is unclear.
The only three medications approved by the United States' Food and Drug Administration for diabetic peripheral neuropathy (DPN) are the antidepressant duloxetine, the anticonvulsant pregabalin, and the long-acting opioid tapentadol ER. Before trying a systemic medication, some doctors recommend treating localized diabetic peripheral neuropathy with lidocaine patches.
The modern goals of glaucoma management are to avoid glaucomatous damage and nerve damage, and preserve visual field and total quality of life for patients, with minimal side effects. This requires appropriate diagnostic techniques and follow-up examinations, and judicious selection of treatments for the individual patient. Although intraocular pressure is only one of the major risk factors for glaucoma, lowering it via various pharmaceuticals and/or surgical techniques is currently the mainstay of glaucoma treatment.
Vascular flow and neurodegenerative theories of glaucomatous optic neuropathy have prompted studies on various neuroprotective therapeutic strategies, including nutritional compounds, some of which may be regarded by clinicians as safe for use now, while others are on trial.
Peri-ocular injection of corticosteroids (injection of corticosteroids very close but not into the eye). In resistant cases oral administration of corticosteroids, immunosuppressive drugs, and laser or cryotherapy of the involved area may be indicated.
Steroid implants have been explored as a treatment option for individuals with non-infectious uveitis. Research comparing fluocinolone acetonide intravitreal implants to standard-of-care treatments (prednisolone with immunosuppressive agents) found that while the steroid implant treatment possibly prevents the recurrence of uveitis, there may be adverse safety outcomes, such as the increased risk for needing cataract surgery and surgery to lower intraocular pressure.
Scleral buckle surgery is an established treatment in which the eye surgeon sews one or more silicone bands (or tyres) to the sclera (the white outer coat of the eyeball). The bands push the wall of the eye inward against the retinal hole, closing the break or reducing fluid flow through it and reducing the effect of vitreous traction thereby allowing the retina to re-attach. Cryotherapy (freezing) is applied around retinal breaks prior to placing the buckle. Often subretinal fluid is drained as part of the buckling procedure. The buckle remains in situ. The most common side effect of a scleral operation is myopic shift. That is, the operated eye will be more short sighted after the operation. Radial scleral buckle is indicated for U-shaped tears or Fishmouth tears, and posterior breaks. Circumferential scleral buckle is indicated for multiple breaks, anterior breaks and wide breaks. Encircling buckles are indicated for breaks covering more than 2 quadrants of retinal area, lattice degeneration located on more than 2 quadrant of retinal area, undetectable breaks, and proliferative vitreous retinopathy.
Treatment for Sturge–Weber syndrome is symptomatic. Laser treatment may be used to lighten or remove the birthmark. Anticonvulsant medications may be used to control seizures. Doctors recommend early monitoring for glaucoma, and surgery may be performed on more serious cases. When one side of the brain is affected and anticonvulsants prove ineffective, the standard treatment is neurosurgery to remove or disconnect the affected part of the brain (hemispherectomy). Physical therapy should be considered for infants and children with muscle weakness. Educational therapy is often prescribed for those with mental retardation or developmental delays, but there is no complete treatment for the delays.
Brain surgery involving removing the portion of the brain that is affected by the disorder can be successful in controlling the seizures so that the patient has only a few seizures that are much less intense than pre-surgery. Surgeons may also opt to "switch-off" the affected side of the brain.
Latanoprost (Xalatan), a prostaglandin, may significantly reduce IOP (intraocular pressure) in patients with glaucoma associated with Sturge–Weber syndrome. Latanoprost is commercially formulated as an aqueous solution in a concentration of 0.005% preserved with 0.02% benzalkonium chloride (BAC). The recommended dosage of latanoprost is one drop daily in the evening, which permits better diurnal IOP control than does morning instillation. Its effect is independent of race, gender or age, and it has few to no side effects. Contraindications include a history of CME, epiretinal membrane formation, vitreous loss during cataract surgery, history of macular edema associated with branch retinal vein occlusion, history of anterior uveitis, and diabetes mellitus. It is also wise to advise patients that unilateral treatment can result in heterochromia or hypertrichosis that may become cosmetically objectionable.
Risk factors such as UVB exposure and smoking can be addressed. Although no means of preventing cataracts has been scientifically proven, wearing sunglasses that counteract ultraviolet light may slow their development. While adequate intake of antioxidants (such as vitamins A, C, and E) has been thought to protect against the risk of cataracts, clinical trials have shown no benefit from supplements; though evidence is mixed, but weakly positive, for a potential protective effect of the nutrients lutein and zeaxanthin. Statin use is somewhat associated with a lower risk of nuclear sclerotic cataracts.
Treatment is based on the underlying cause, if any. Where the likely underlying condition is known, treatment of this condition is indicated treated to reduce progression of the disease and symptoms. For cases without those conditions, there is only symptomatic treatment.
Cataract removal can be performed at any stage and no longer requires ripening of the lens. Surgery is usually 'outpatient' and performed using local anesthesia. About 9 of 10 patients can achieve a corrected vision of 20/40 or better after surgery.
Several recent evaluations found that cataract surgery can meet expectations only when significant functional impairment due to cataracts exists before surgery. Visual function estimates such as VF-14 have been found to give more realistic estimates than visual acuity testing alone. In some developed countries, a trend to overuse cataract surgery has been noted, which may lead to disappointing results.
Phacoemulsification is the most widely used cataract surgery in the developed world. This procedure uses ultrasonic energy to emulsify the cataract lens. Phacoemulsification typically comprises six steps:
- Anaesthetic – The eye is numbed with either a subtenon injection around the eye (see: retrobulbar block) or topical anesthetic eye drops. The former also provides paralysis of the eye muscles.
- Corneal incision – Two cuts are made at the margin of the clear cornea to allow insertion of instruments into the eye.
- Capsulorhexis – A needle or small pair of forceps is used to create a circular hole in the capsule in which the lens sits.
- Phacoemulsification – A handheld ultrasonic probe is used to break up and emulsify the lens into liquid using the energy of ultrasound waves. The resulting 'emulsion' is sucked away.
- Irrigation and aspiration – The cortex, which is the soft outer layer of the cataract, is aspirated or sucked away. Fluid removed is continually replaced with a saline solution to prevent collapse of the structure of the anterior chamber (the front part of the eye).
- Lens insertion – A plastic, foldable lens is inserted into the capsular bag that formerly contained the natural lens. Some surgeons also inject an antibiotic into the eye to reduce the risk of infection. The final step is to inject salt water into the corneal wounds to cause the area to swell and seal the incision.
Extracapsular cataract extraction (ECCE) consists of removing the lens manually, but leaving the majority of the capsule intact. The lens is expressed through a 10- to 12-mm incision which is closed with sutures at the end of surgery. ECCE is less frequently performed than phacoemulsification, but can be useful when dealing with very hard cataracts or other situations where emulsification is problematic. Manual small incision cataract surgery (MSICS) has evolved from ECCE. In MSICS, the lens is removed through a self-sealing scleral tunnel wound in the sclera which, ideally, is watertight and does not require suturing. Although "small", the incision is still markedly larger than the portal in phacoemulsion. This surgery is increasingly popular in the developing world where access to phacoemulsification is still limited.
Intracapsular cataract extraction (ICCE) is rarely performed. The lens and surrounding capsule are removed in one piece through a large incision while pressure is applied to the vitreous membrane. The surgery has a high rate of complications.
There is no pharmacological treatment for Roussy–Lévy syndrome.
Treatment options focus on palliative care and corrective therapy. Patients tend to benefit greatly from physical therapy (especially water therapy as it does not place excessive pressure on the muscles), while moderate activity is often recommended to maintain movement, flexibility, muscle strength and endurance.
Patients with foot deformities may benefit from corrective surgery, which, however, is usually a last resort. Most such surgeries include straightening and pinning the toes, lowering the arch, and sometimes, fusing the ankle joint to provide stability. Recovering from these surgeries is oftentimes long and difficult. Proper foot care including custom-made shoes and leg braces may minimize discomfort and increase function.
While no medicines are reported to treat the disorder, patients are advised to avoid certain medications as they may aggravate the symptoms.
Proper management of diabetes mellitus can prevent proximal diabetic neuropathy from ever occurring.
The incidence of proximal diabetic neuropathy incidence is thought to be correlated to blood glucose control in diabetics, and is likely reversible with better control.
Medication helps reduce the pain involved in proximal diabetic neuropathy. Most patients take oral medication that is prescribed by a doctor. Common types of medication used to treat diabetic amyotrophy include anticonvulsives (e.g. gabapentin, pregabalin) as well as opioid medications, although the latter category is not optimally indicated for neuropathic pain.
A Cochrane Review sought to evaluate the effects of perioperative antibiotic prophylaxis for endophthalmitis following cataract surgery. The review showed high-certainty evidence that antibiotic injections in the eye with cefuroxime at the end of surgery lowers the chance of endophthalmitis. Also, the review showed moderate evidence that antibiotic eye drops (levofloxacin or chloramphenicol) with antibiotic injections (cefuroxime or penicillin) probably lowers the chance of endophthalmitis compared with injections or eye drops alone. Separate studies from the research showed that a periocular injection of penicillin with chloramphenicol-suphadimidine eye drops, and an intracameral cefuroxime injection with topical levofloxacin resulted in a risk reduction of developing endophthalmitis following cataract surgery for subjects.
In the case of intravitreal injections, however, antibiotics are not effective. Studies have demonstrated no difference between rates of infection with and without antibiotics when intravitreal injections are performed. The only consistent method of antibioprophylaxis in this instance is a solution of povidone-iodine applied pre-injection.
The patient needs urgent examination by an ophthalmologist, preferably a vitreoretinal specialist who will usually decide for urgent intervention to provide intravitreal injection of potent antibiotics. Injections of vancomycin (to kill Gram-positive bacteria) and ceftazidime (to kill Gram-negative bacteria) are routine. Even though antibiotics can have negative impacts on the retina in high concentrations, the facts that visual acuity worsens in 65% of endophthalmitis patients and prognosis gets poorer the longer an infection goes untreated make immediate intervention necessary. Endophthalmitis patients may also require an urgent surgery (pars plana vitrectomy), and evisceration may be necessary to remove a severe and intractable infection which could result in a blind and painful eye.
Steroids may be injected intravitreally if the cause is allergic.
In patients with acute endophthalmitis, combined steroid treatment with antibiotics have been found to improve visual outcomes, versus patients only treated with antibiotics, but any improvements on the resolution acute endophthalmitis is unknown.
Quick determination of the cause may lead to urgent measures to save the eye and life of the patient. High clinical suspicion should be kept for painless vision loss in patients with atherosclerosis, deep venous thrombosis, atrial fibrillation, pulmonary thromboembolism or other previous embolic episodes. Those caused by a carotid artery embolism or occlusion have the potential for further stroke by detachment of embolus and migration to an end-artery of the brain. Hence, proper steps to prevent such an eventuality need to be taken.
Retinal arterial occlusion is an ophthalmic emergency, and prompt treatment is essential. Completely anoxic retina in animal models causes irreversible damage in about 90 minutes. Nonspecific methods to increase blood flow and dislodge emboli include digital massage, 500 mg IV acetazolamide and 100 mg IV methylprednisolone (for possible arteritis). Additional measures include paracentesis of aqueous humor to decrease IOP acutely. An ESR should be drawn to detect possible giant cell arteritis. Improvement can be determined by visual acuity, visual field testing, and by ophthalmoscopic examination.
At a later stage, pan-retinal photocoagulation (PRP) with an argon laser appears effective in reducing the neovascular components and their sequelae.
The visual prognosis for ocular ischemic syndrome varies from usually poor to fair, depending on speed and effectiveness of the intervention. However, prompt diagnosis is crucial as the condition may be a presenting sign of serious cerebrovascular and ischemic heart diseases.
In 2009, the Undersea and Hyperbaric Medical Society added "central retinal artery occlusion" to their list of approved indications for hyperbaric oxygen (HBO). When used as an adjunctive therapy, the edema reducing properties of HBO, along with down regulation of inflammatory cytokines may contribute to the improvement in vision. Prevention of vision loss requires that certain conditions be met: the treatment be started before irreversible damage has occurred (over 24 hours), the occlusion must not also occur at the ophthalmic artery, and treatment must continue until the inner layers of the retina are again oxygenated by the retinal arteries.
A range of medications that act on the central nervous system has been found to be useful in managing neuropathic pain. Commonly used treatments include tricyclic antidepressants (such as nortriptyline or amitriptyline), the serotonin-norepinephrine reuptake inhibitor (SNRI) medication duloxetine, and antiepileptic therapies such as gabapentin, pregabalin, or sodium valproate. Few studies have examined whether nonsteroidal anti-inflammatory drugs are effective in treating peripheral neuropathy.
Symptomatic relief for the pain of peripheral neuropathy may be obtained by application of topical capsaicin. Capsaicin is the factor that causes heat in chili peppers. The evidence suggesting that capsaicin applied to the skin reduces pain for peripheral neuropathy is of moderate to low quality and should be interpreted carefully before using this treatment option. Local anesthesia often is used to counteract the initial discomfort of the capsaicin. Some current research in animal models has shown that depleting neurotrophin-3 may oppose the demyelination present in some peripheral neuropathies by increasing myelin formation.
High-quality evidence supports the use of cannabis for neuropathic pain.
The first line of management for chemical injuries is usually copious irrigation of the eye with an isotonic saline or sterile water. In the cases of chemical burns, one should not try to buffer the solution, but instead it with copious flushing.
The treatment of peripheral neuropathy varies based on the cause of the condition, and treating the underlying condition can aid in the management of neuropathy. When peripheral neuropathy results from diabetes mellitus or prediabetes, blood sugar management is key to treatment. In prediabetes in particular, strict blood sugar control can significantly alter the course of neuropathy. In peripheral neuropathy that stems from immune-mediated diseases, the underlying condition is treated with intravenous immunoglobulin or steroids. When peripheral neuropathy results from vitamin deficiencies or other disorders, those are treated as well.
In cases of eyelid lace, sutures may be a part of appropriate management by the primary care physician so long as the laceration does not threaten the canaliculi, is not deep, and does not affect the lid margins.