Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Corticosteroids: For years, there was no treatment for atopic eczema. Atopy was believed to be allergic in origin due to the patients’ extremely high serum IgE levels, but standard therapies at the time did not help. Oral prednisone was sometimes prescribed for severe cases. Wet wraps (covering the patients with gauze) were sometimes used in hospitals to control itching. However, the discovery of corticosteroids in the 1950s, and their subsequent incorporation in topical creams and ointments, provided a significant advancement in the treatment of atopic eczema and other conditions. Thus, the use of topical steroids avoided many of the undesirable side-effects of systemic administration of corticosteroids. Topical steroids control the itching and the rash that accompany atopic eczema. Side-effects of topical steroid use are plentiful, and the patient is advised to use topical steroids in moderation and only as needed.
Immune modulators: Pimecrolimus and tacrolimus creams and ointments became available in the 1980s and are sometimes prescribed for atopic eczema. They act by interfering with T cells but have been linked to the development of cancer.
Avoiding dry skin: Dry skin is a common feature of patients with atopic eczema (see also eczema for information) and can exacerbate atopic eczema.
Avoiding allergens and irritants: See eczema for information.
The preferred treatment for many patients is desensitization to aspirin, undertaken at a clinic or hospital specializing in such treatment. In the United States, the Scripps Clinic in San Diego, CA, the Massachusetts General Hospital in Boston, MA, the Brigham and Women's Hospital in Boston, MA, National Jewish Hospital in Denver and Stanford University Adult ENT Clinic have allergists who routinely perform aspirin desensitization procedures for patients with aspirin-induced asthma. Patients who are desensitized then take a maintenance dose of aspirin daily and while on daily aspirin they often have reduced need for supporting medications, fewer asthma and sinusitis symptoms than previously, and many have an improved sense of smell. Desensitization to aspirin reduces the chance of nasal polyp recurrence, and can slow the regrowth of nasal polyps. Even patients desensitized to aspirin may continue to need other medications including nasal steroids, inhaled steroids, and leukotriene antagonists.
Leukotriene antagonists and inhibitors (montelukast, zafirlukast, and zileuton) are often helpful in treating the symptoms of aspirin-induced asthma. Some patients require oral steroids to alleviate asthma and congestion, and most patients will have recurring or chronic sinusitis due to the nasal inflammation.
Often surgery is required to remove nasal polyps, although they typically recur, particularly if aspirin desensitization is not undertaken. 90% of patients have been shown to have recurrence of nasal polyps within 5 years after surgery, with 47% requiring revision surgery in the same time period.
Completely eliminating salicylate from one's diet and environment is virtually impossible and is not a recommended course of action by many immunologists. The range of foods that have no salicylate content is very limited, and consequently salicylate-free diets are very restricted.
Desensitization involves daily administration of progressive doses of salicylate. This process is usually performed as an inpatient, with a crash-cart at the bedside over a six-day period, beginning with 25 mg of I.V. lysine-aspirin and progressing to 500 mg if tolerated.
Montelukast is one form of treatment used in aspirin-intolerant asthma.
Treatment usually involves adrenaline (epinephrine), antihistamines, and corticosteroids.
If the entire body is involved, then anaphylaxis can take place, which is an acute, systemic reaction that can prove fatal.
Risk factors for drug allergies can be attributed to the drug itself or the characteristics of the patient. Drug-specific risk factors include the dose, route of administration, duration of treatment, repetitive exposure to the drug, and concurrent illnesses. Host risk factors include age, sex, atopy, specific genetic polymorphisms, and inherent predisposition to react to multiple unrelated drugs (multiple drug allergy syndrome).
A drug allergy is more likely to develop with large doses and extended exposure.
The culprit can be both a prescription drug or an over-the-counter medication.
Examples of common drugs causing drug eruptions are antibiotics and other antimicrobial drugs, sulfa drugs, nonsteroidal anti-inflammatory drugs (NSAIDs), biopharmaceuticals, chemotherapy agents, anticonvulsants, and psychotropic drugs. Common examples include photodermatitis due to local NSAIDs (such as piroxicam) or due to antibiotics (such as minocycline), fixed drug eruption due to acetaminophen or NSAIDs (Ibuprofen), and the rash following ampicillin in cases of mononucleosis.
Certain drugs are less likely to cause drug eruptions (rates estimated to be ≤3 per 1000 patients exposed). These include: digoxin, aluminum hydroxide, multivitamins, acetaminophen, bisacodyl, aspirin, thiamine, prednisone, atropine, codeine, hydrochlorothiazide, morphine, insulin, warfarin, and spironolactone.
In adults, the prevalence of IgE sensitization to allergens from house dust mite and cat, but not grass, seem to decrease over time as people age. However, the biological reasons for these changes are not fully understood.
Drug allergies are attributed to "drug hypersensitivity," otherwise known as objectively reproducible symptoms or signs initiated by exposure to a drug at a dose normally tolerated by non-hypersensitive persons. Drug hypersensitivity reactions are the mediators of a drug allergy.
There are two mechanisms for a drug allergy to occur: IgE or non-IgE mediated. In IgE-mediated reactions, also known as Immunoglobulin E mediated reactions, drug allergens bind to IgE antibodies, which are attached to mast cells and basophils, resulting in IgE cross-linking, cell activation and release of preformed and newly formed mediators.
An important salicylate drug is aspirin, which has a long history. Aspirin intolerance was widely known by 1975, when the understanding began to emerge that it is a pharmacological reaction, not an allergy.
Some examples:
- Allergic asthma
- Allergic conjunctivitis
- Allergic rhinitis ("hay fever")
- Anaphylaxis
- Angioedema
- Urticaria (hives)
- Eosinophilia
- Penicillin allergy
- Cephalosporin allergy
- Food allergy
- Sweet itch
Avoidance of antitoxins that may cause serum sickness is the best way to prevent serum sickness. Although, sometimes, the benefits outweigh the risks in the case of a life-threatening bite or sting. Prophylactic antihistamines or corticosteroids may be used concomitant with the antitoxin. Skin testing may be done beforehand in order to identify individuals who may be at risk of a reaction. Physicians should make their patients aware of the drugs or antitoxins to which they are allergic if there is a reaction. The physician will then choose an alternate antitoxin if it's appropriate or continue with prophylactic measures.
The side effects of penicillin can be altered by taking other medications at the same time. Taking oral contraceptives along with penicillin may lower the effects of the contraceptive. When probenecid is used concurrently with penicillin, kidney excretion of probenecid is increase resulting in higher blood levels of penicillin in the circulation. In some instances, this would be intended therapeutic effect. In other instances, this is an unintended side effect. Neomycin can lower the absorption of penicillin from the gastrointestinal tract resulting in lower than expected levels of penicillin in the circulation. This side effect may result in an ineffective therapeutic effect of penicillin. When methotrexate is administered with penicillin, toxicity may occur related to methotrexante.
With discontinuation of offending agent, symptoms usually disappear within 4–5 days.
Corticosteroids, antihistamines, and analgesics are the main line of treatment. The choice depends on the severity of the reaction.
Use of plasmapheresis has also been described.
Few treatments are fully efficacious once lesions have appeared. The only effective form of treatment is preventitive - i.e. prevent further insect bites - so these techniques will also be discussed here. Treatments generally fall into one of the following categories:
1) Insecticides and Repellents: These may be applied to the horse or its environment. The most commonly used and effective are permethrins. and benzyl benzoate Citronella has been used, with variable effect. Some sources advocate draining of any stagnant water or pools, to reduce the local breeding potential of the insects. Midge numbers are often larger near water sources, for example ponds, bogs, and slow moving water. Moving the horse away from these areas may help to prevent further problems.
2) Barrier Techniques: Rugs etc., that prevent flies and midges settling on the animal's skin to bite. These include "Boett Rugs" and fly masks. In addition, thin screens may be placed over stable doors and windows to exclude biting insects. Stabling the horse at times of day when the midges are most prevalent is also quite effective.
3) Immunotherapy: A wide variety immunotherapy and desensitisation protocols have been trialled in attempts to reduce or modify the immune response, with considerable success rates. So far, there appear to a significant benefit in more than 80% of equine cases. This particular BioEos product is now available through The National Sweet Itch Centre in the UK and ProVet in the EU. The underlying immune modulation is now proven to shift the immune system from a Th2 to a Th1 mode. BioEos is a research and development company with worldwide patents derived from many years of research at University College London and the many applications are being developed for use in both human, agricultural and aquaculture treatments. Current clinical trials for the treatment of pancreatic cancers (Immodulon Therapeutics) and the treatment of other chronic immune deficiency disorders (ActinoPharma) are putting this research into practical effect.
4) Nutritional supplements: Various supplements may be effective in individuals, including fatty acid supplemantation and linseed oil. However, although owners perceived an improvement, this was not bourne out by objective statistical analysis.
5) Symptomatic Control: Control of symptoms to some degree can be achieved with antihistamines (especially hydroxyzine, and with corticosteroids, although the potential side effects (e.g. laminitis, immune suppression) make this a less preferred option. In addition, antibiotics may be required to manage any secondary infection.
6) Alternative Medicines: A wide variety of herbal, homeopathic and other alternative remedies have been suggested. Among the natural remedies suggested are sulfur, wild geranium (as the base for a shampoo), Lavender oil, Aloe vera (to reduce the itching).
Overall, the wide variety of treatments proposed leads to the conclusion that no one method is universally effective.
Allergies are caused by an oversensitive immune system, leading to a misdirected immune response. The immune system normally protects the body against harmful substances such as bacteria and viruses. Allergy occurs when the immune system reacts to substances (allergens) that are generally harmless and in most people do not cause an immune response.
- Animal hair and dander
- cockroach calyx
- dust mite excretion
When penicillin is used at high doses hypokalemia, metabolic acidosis, and hyperkalemia can occur. Developing hypernatremia after administering high doses of penicillin can be a serious side effect.
Short-acting beta-agonists like salbutamol or terbutaline or long-acting beta-agonists like salmeterol and formoterol dilate airways which relieve the symptoms thus reducing the severity of the reaction. Some patients also use it just before work to avoid a drop in the FEV.
Anti-inflammatory agents like corticosteroids, LKTRA or mast cell stabilizers can also be used depending on the severity of the case.
Symptoms of an allergic reaction to animals may include itchy skin, nasal congestion, itchy nose, sneezing, chronic sore throat or itchy throat, swollen, red, itchy, and watery eyes, coughing, asthma, or rash on the face or chest.
Depending on the severity of the symptoms, FLD can last from one to to weeks, or they can last for the rest of one’s life. Acute FLD has the ability to be treated because hypersensitivity to the antigens has not yet developed. The main treatment is rest and reducing the exposure to the antigens through masks and increased airflow in confined spaces where the antigens are present. Another treatment for acute FLD is pure oxygen therapy. For chronic FLD, there is no true treatment because the patient has developed hypersensitivity meaning their FLD could last the rest of their life. Any exposure to the antigens once hypersensitivity can set off another chronic reaction.
NSAID or nonsteroidal anti-inflammatory drug hypersensitivity reactions encompasses a broad range of allergic or allergic-like symptoms that occur within minutes to hours after ingesting aspirin or other NSAID nonsteroidal anti-inflammatory drugs. Hypersensitivity drug reactions differ from drug toxicity reactions in that drug toxicity reactions result from the pharmacological action of a drug, are dose-related, and can occur in any treated individual (see nonsteroidal anti-inflammatory drugs section on adverse reactions for NSAID-induced toxic reactions); hypersensitivity reactions are idiosyncratic reactions to a drug. Although the term NSAID was introduced to signal a comparatively low risk of adverse effects, NSAIDs do evoke a broad range of hypersensitivity syndromes. These syndromes have recently been classified by the European Academy of Allergy and Clinical Immunology Task Force on NSAIDs Hypersensitivity. The classification organizes the hypersensitivity reactions to NSAIDs into the following five categories:
- 1) NSAIDs-exacerbated respiratory disease (NERD) is an acute (immediate to several hours) exacerbation of bronchoconstriction and other symptoms of asthma (see aspirin-induced asthma) in individuals with a history of asthma and/or nasal congestion, rhinorrhea or other symptoms of rhinitis and sinusitis in individuals with a history of rhinosinusitis after ingestion of various NSAIDs, particularly those that act by inhibiting the COX-1 enzyme. NERD does not appear to be due to a true allergic reaction to NSAIDs but rather at least in part to the more direct effects of these drugs to promote the production and/or release of certain mediators of allergy. That is, inhibition of cellular COX activity deprives tissues of its anti-inflammatory product(s), particularly prostaglandin E2 while concurrently shuttling its substrate, arachidonic acid, into other metabolizing enzymes, particularly 5-lipoxygenase (ALOX5) to overproduce pro-inflammatory leukotriene and 5-Hydroxyicosatetraenoic acid metabolites and 15-lipoxygenase (ALOX15) to overproduce pro-inflammatory 15-Hydroxyicosatetraenoic acid metabolites, including eoxins; the condition is also associated with a reduction in the anti-inflammatory metabolite, lipoxin A4, and increases in certain pro-allergic chemokines such as eotaxin-2 and CCL7.
- 2) NSAIDs-exacerbated cutaneous disease (NECD) is an acute exacerbation of wheals and/or angioedema in individuals with a history of chronic urticaria. NECD also appears due to the non-allergic action of NSAIDs in inhibiting the production of COX anti-inflammatory metabolites while promoting the production 5-lipoxygenase and 15-lipoxygenase pro-inflammatory metabolites and the overproduction of certain pro-allergic chemokines, e.g. eotaxin-1, eotaxin-2, RANTES, and interleukin-5.
- 3) NSAIDs-induced urticarial disease (NEUD) is the acute development of wheals and/or angioedema in individuals with no history of chronic NSAIDs-induced urticaria or related diseases. The mechanism behind NEUD is unknown but may be due to the non-allergic action of NSAIDs in promoting the production and/or release of allergy mediators.
- 4) Single NSAID-induced urticarial/angioedema or anaphylaxis (SNIUAA) is the acute development of urticarial, angioedema, or anaphylaxis in response to a single type of NSAID and/or a single group of NSAIDs with a similar structure but not to other structurally unrelated NSAIDs in individuals with no history of underlying relevant chronic diseases. SNIUAA is due to a true IgE-mediated allergy reaction.
- 5 Single NSAID-induced delayed reactions (SNIDR) are a set of delayed onset (usually more than 24 hour) reactions to NSAIDs. SNIDR are most commonly skin reactions that may be relatively mild moderately severe such as maculopapular rash, fixed drug eruptions, photosensitivity reactions, delayed urticaria, and contact dermatitis or extremely severe such as the DRESS syndrome, acute generalized exanthematous pustulosis, the Stevens–Johnson syndrome, and toxic epidermal necrolysis (also termed Lyell's syndrome). SNIDR result from the drug-specific stimulation of CD4+ T lymphocytes and CD8+ cytotoxic T cells to elicit a delayed type hypersensitivity reaction.
The best treatment is to avoid the provoking allergen, as chronic exposure can cause permanent damage. Corticosteroids such as prednisolone may help to control symptoms but may produce side-effects.
Underlying disease must be controlled to prevent exacerbation and worsening of ABPA, and in most patients this consists of managing their asthma or CF. Any other co-morbidities, such as sinusitis or rhinitis, should also be addressed.
Hypersensitivity mechanisms, as described above, contribute to progression of the disease over time and, when left untreated, result in extensive fibrosis of lung tissue. In order to reduce this, corticosteroid therapy is the mainstay of treatment (for example with prednisone); however, studies involving corticosteroids in ABPA are limited by small cohorts and are often not double-blinded. Despite this, there is evidence that acute-onset ABPA is improved by corticosteroid treatment as it reduces episodes of consolidation. There are challenges involved in long-term therapy with corticosteroids—which can induce severe immune dysfunction when used chronically, as well as metabolic disorders—and approaches have been developed to manage ABPA alongside potential adverse effects from corticosteroids.
The most commonly described technique, known as sparing, involves using an antifungal agent to clear spores from airways adjacent to corticosteroid therapy. The antifungal aspect aims to reduce fungal causes of bronchial inflammation, whilst also minimising the dose of corticosteroid required to reduce the immune system’s input to disease progression. The strongest evidence (double-blinded, randomized, placebo-controlled trials) is for itraconazole twice daily for four months, which resulted in significant clinical improvement compared to placebo, and was mirrored in CF patients. Using itraconazole appears to outweigh the risk from long-term and high-dose prednisone. Newer triazole drugs—such as posaconazole or voriconazole—have not yet been studied in-depth through clinical trials in this context.
Whilst the benefits of using corticosteroids in the short term are notable, and improve quality of life scores, there are cases of ABPA converting to invasive aspergillosis whilst undergoing corticosteroid treatment. Furthermore, in concurrent use with itraconazole, there is potential for drug interaction and the induction of Cushing syndrome in rare instances. Metabolic disorders, such as diabetes mellitus and osteoporosis, can also be induced.
In order to mitigate these risks, corticosteroid doses are decreased biweekly assuming no further progression of disease after each reduction. When no exacerbations from the disease are seen within three months after discontinuing corticosteroids, the patient is considered to be in complete remission. The exception to this rule is patients who are diagnosed with advanced ABPA; in this case removing corticosteroids almost always results in exacerbation and these patients are continued on low-dose corticosteroids (preferably on an alternate-day schedule).
Serum IgE can be used to guide treatment, and levels are checked every 6–8 week after steroid treatment commences, followed by every 8 weeks for one year. This allows for determination of baseline IgE levels, though it’s important to note that most patients do not entirely reduce IgE levels to baseline. Chest X-ray or CT scans are performed after 1–2 months of treatment to ensure infiltrates are resolving.
The underlying mechanism can be immunological (such as in drug allergies) or non-immunological (for example, in photodermatitis or as a side effect of anticoagulants). A fixed drug eruption is the term for a drug eruption that occurs in the same skin area every time the person is exposed to the drug. Eruptions can occur frequently with a certain drug (for example, with phenytoin), or be very rare (for example, Sweet's syndrome following the administration of colony-stimulating factors).
Recovery is directly dependent on the duration and level of exposure to the causative agent. Depending on the severity of the case, the condition of the patient can improve dramatically during the first year after removal from exposure.
Three basic types of procedures are used for treating the affected workers: reducing a worker's exposure, removing a worker from the environment with the asthma-causing agent, and treatment with asthma medications. Completely stopping exposure is more effective treatment than reducing exposure. By reducing exposure, the probability of suffering another reaction is lowered. Methods of reducing exposure include transferring an affected worker to a position without the relevant asthmagen, use of respiratory protection, and engineering controls. In 1984 innovator David Cornell discovered and invented effective control equipment in the UK for the removal of many harmful workplace fumes. 'BOFA' extraction products are now found in over 100 countries worldwide.
People affected by occupational asthma that occurred after a latency period, whether a few months or years, should be immediately removed from exposure to the causative agent. However, this can entail severe socio-economic consequences for the worker as well as the employer due to loss of job, unemployment, compensation issues, quasi-permanent medical expenditures, and hiring and re-training of new personnel. This can be mitigated by transferring the worker within a company.