Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Several medical treatments shift potassium ions from the bloodstream into the cellular compartment, thereby reducing the risk of complications. The effect of these measures tends to be short-lived, but may temporize the problem until potassium can be removed from the body.
- Insulin (e.g. intravenous injection of 10-15 units of regular insulin along with 50 ml of 50% dextrose to prevent the blood sugar from dropping too low) leads to a shift of potassium ions into cells, secondary to increased activity of the sodium-potassium ATPase. Its effects last a few hours, so it sometimes must be repeated while other measures are taken to suppress potassium levels more permanently. The insulin is usually given with an appropriate amount of glucose to prevent hypoglycemia following the insulin administration.
- Salbutamol (albuterol), a β-selective catecholamine, is administered by nebulizer (e.g. 10–20 mg). This medication also lowers blood levels of K by promoting its movement into cells.
- Sodium bicarbonate may be used with the above measures if it is believed the person has metabolic acidosis.
Severe cases require hemodialysis or hemofiltration, which are the most rapid methods of removing potassium from the body. These are typically used if the underlying cause cannot be corrected swiftly while temporizing measures are instituted or there is no response to these measures.
Potassium can bind to agents in the gastrointestinal tract. Sodium polystyrene sulfonate with sorbitol (Kayexalate) has been approved for this use and can be given by mouth or rectally. However, careful clinical trials to demonstrate the effectiveness of sodium polystyrene are lacking, and use of sodium polystyrene sulfonate, particularly if with high sorbitol content, is uncommonly but convincingly associated with colonic necrosis. There are no systematic studies (>6 months) looking at the long-term safety of this medication. Another medication by the name of patiromer was approved in 2015.
Loop diuretics (furosemide, bumetanide, torasemide) and thiazide diuretics (e.g., chlorthalidone, hydrochlorothiazide, or chlorothiazide) can increase kidney potassium excretion in people with intact kidney function.
Fludrocortisone, a synthetic mineralocorticoid, can also increase potassium excretion by the kidney in patients with functioning kidneys. Trials of fludrocortisone in patients on dialysis have shown it to be ineffective.
Patiromer is a selective sorbent that is taken by mouth and works by binding free potassium ions in the gastrointestinal tract and releasing calcium ions for exchange, thus lowering the amount of potassium available for absorption into the bloodstream and increasing the amount that is excreted via the feces. The net effect is a reduction of potassium levels in the blood serum.
Treatment including addressing the cause, such as improving the diet, treating diarrhea, or stopping an offending medication. People without a significant source of potassium loss and who show no symptoms of hypokalemia may not require treatment.
Mild hypokalemia (>3.0 meq/l) may be treated with oral potassium chloride supplements (Klor-Con, Sando-K, Slow-K). As this is often part of a poor nutritional intake, potassium-containing foods may be recommended, such as leafy green vegetables, avocados, tomatoes, coconut water, citrus fruits, oranges, or bananas. Both dietary and pharmaceutical supplements are used for people taking diuretic medications.
Severe hypokalemia (<3.0 meq/l) may require intravenous supplementation. Typically, a saline solution is used, with 20–40 meq/l KCl per liter over 3–4 hours. Giving IV potassium at faster rates (20–25 meq/hr) may predispose to ventricular tachycardias and requires intensive monitoring. A generally safe rate is 10 meq/hr. Even in severe hypokalemia, oral supplementation is preferred given its safety profile. Sustained-release formulations should be avoided in acute settings.
Difficult or resistant cases of hypokalemia may be amenable to a potassium-sparing diuretic, such as amiloride, triamterene, spironolactone, or eplerenone. Concomitant hypomagnesemia will inhibit potassium replacement, as magnesium is a cofactor for potassium uptake.
When replacing potassium intravenously, infusion by a central line is encouraged to avoid the frequent occurrence of a burning sensation at the site of a peripheral infusion, or the rare occurrence of damage to the vein. When peripheral infusions are necessary, the burning can be reduced by diluting the potassium in larger amounts of fluid, or mixing 3 ml of 1% lidocaine to each 10 meq of KCl per 50 ml of fluid. The practice of adding lidocaine, however, raises the likelihood of serious medical errors.
Acute adrenal insufficiency is a medical emergency and needs to be treated with injectable hydrocortisone and fluid support.
The amount of potassium deficit can be calculated using the following formula:
Meanwhile, the daily body requirement of potassium is calculated by multiplying 1 mmol to body weight in kilogrammes. Adding potassium deficit and daily potassium requirement would give the total amount of potassium need to be corrected in mmol. Dividing mmol by 13.4 will give the potassium in grams.
The primary treatment of digoxin toxicity is digoxin immune fab, which is an antibody made up of anti-digoxin immunoglobulin fragments. This antidote has been shown to be highly effective in treating life-threatening signs of digoxin toxicity such as hyperkalemia, hemodynamic instability, and arrhythmias. Fab dose can be determined by two different methods. First method is based on the amount of digoxin ingested whereas the second method is based on the serum digoxin concentration and the weight of the person.
Other treatment that may be used to treat life-threatening arrhythmias until Fab is acquired are magnesium, phenytoin, and lidocaine. Magnesium suppresses digoxin-induced ventricular arrhythmias while phenytoin and lidocaine suppresses digoxin-induced ventricular automaticity and delay afterdepolarizations without depressing AV conduction. In the case of an abnormally slow heart rate (bradyarrhythmias), Atropine, catecholamines (isoprenaline or salbutamol), and/or temporary cardiac pacing can be used.
Adrenal crisis is triggered by physiological stress (such as trauma). Activities that have an elevated risk of trauma are best avoided. Treatment must be given within two hours of trauma and consequently it is advisable to carry injectable hydrocortisone in remote areas.
Treatment is first targeted at the specific metabolic disorder.
Acute kidney failure prior to chemotherapy. Since the major cause of acute kidney failure in this setting is uric acid build-up, therapy consists of rasburicase to wash out excessive uric acid crystals as well as a loop diuretic and fluids. Sodium bicarbonate should not be given at this time. If the patient does not respond, hemodialysis may be instituted, which is very efficient in removing uric acid, with plasma uric acid levels falling about 50% with each six-hour treatment.
Acute kidney failure after chemotherapy. The major cause of acute kidney failure in this setting is hyperphosphatemia, and the main therapeutic means is hemodialysis. Forms of hemodialysis used include continuous arteriovenous hemodialysis (CAVHD), continuous venovenous hemofiltration (CVVH), or continuous venovenous hemodialysis (CVVHD).
People about to receive chemotherapy for a cancer with a high cell turnover rate, especially lymphomas and leukemias, should receive prophylactic oral or IV allopurinol (a xanthine oxidase inhibitor, which inhibits uric acid production) as well as adequate IV hydration to maintain high urine output (> 2.5 L/day). Allopurinol mechanically blocks rasburicase's operation to solubilize.
Rasburicase is an alternative to allopurinol and is reserved for people who are high-risk in developing TLS. It is a synthetic urate oxidase enzyme and acts by degrading uric acid. However, it's not clear if it results in any important benefits as of 2014.
Alkalization of the urine with acetazolamide or sodium bicarbonate is controversial. Routine alkalization of urine above pH of 7.0 is not recommended. Alkalization is also not required if uricase is used.
Treating proteinuria mainly needs proper diagnosis of the cause.
The most common cause is diabetic nephropathy; in this case, proper glycemic control may slow the progression. Medical management consists of angiotensin converting enzyme (ACE) inhibitors, which are typically first-line therapy for proteinuria. In patients whose proteinuria is not controlled with ACE inhibitors, the addition of an aldosterone antagonist (i.e., spironolactone) or angiotensin receptor blocker (ARB) may further reduce protein loss. Caution must be used if these agents are added to ACE inhibitor therapy due to the risk of hyperkalemia.
Proteinuria secondary to autoimmune disease should be treated with steroids or steroid-sparing agent plus the use of ACE inhibitors.
The clinician must protect the patient against hypotension, renal failure, acidosis, hyperkalemia and hypocalcemia. Admission to an intensive care unit, preferably one experienced in trauma medicine, may be appropriate; even well-seeming patients need observation. Treat open wounds as surgically appropriate, with debridement, antibiotics and tetanus toxoid; apply ice to injured areas.
Intravenous hydration of up to 1.5 L/hour should continue to prevent hypotension. A urinary output of at least 300 ml/hour should be maintained with IV fluids and mannitol, and hemodialysis considered if this amount of diuresis is not achieved. Use intravenous sodium bicarbonate to keep the urine pH at 6.5 or greater, to prevent myoglobin and uric acid deposition in kidneys.
To prevent hyperkalemia/hypocalcemia, consider the following adult doses:
- calcium gluconate 10% 10ml or calcium chloride 10% 5 ml IV over 2 minutes
- sodium bicarbonate 1 meq/kg IV slow push
- regular insulin 5–10 U
- 50% glucose 1–2 ampules IV bolus
- kayexalate 25–50 g with sorbitol 20% 100 ml by mouth or rectum.
Even so, cardiac arrhythmias may develop; electrocardiographic monitoring is advised, and specific treatment begun promptly.
In the acute phase of an attack, administration of potassium will quickly restore muscle strength and prevent complications. However, caution is advised as the total amount of potassium in the body is not decreased, and it is possible for potassium levels to overshoot ("rebound hyperkalemia"); slow infusions of potassium chloride are therefore recommended while other treatment is commenced.
The effects of excess thyroid hormone typically respond to the administration of a non-selective beta blocker, such as propranolol (as most of the symptoms are driven by increased levels of adrenaline and its effect on the β-adrenergic receptors). Subsequent attacks may be prevented by avoiding known precipitants, such as high salt or carbohydrate intake, until the thyroid disease has been adequately treated.
Treatment of the thyroid disease usually leads to resolution of the paralytic attacks. Depending on the nature of the disease, the treatment may consist of thyrostatics (drugs that reduce production of thyroid hormone), radioiodine, or occasionally thyroid surgery.
The myriad causes of intrinsic AKI require specific therapies. For example, intrinsic AKI due to vasculitis or glomerulonephritis may respond to steroid medication, cyclophosphamide, and (in some cases) plasma exchange. Toxin-induced prerenal AKI often responds to discontinuation of the offending agent, such as ACE inhibitors, ARB antagonists, aminoglycosides, penicillins, NSAIDs, or paracetamol.
The use of diuretics such as furosemide, is widespread and sometimes convenient in improving fluid overload. It is not associated with higher mortality (risk of death), nor with any reduced mortality or length of intensive care unit or hospital stay.
In prerenal AKI without fluid overload, administration of intravenous fluids is typically the first step to improving kidney function. Volume status may be monitored with the use of a central venous catheter to avoid over- or under-replacement of fluid.
If low blood pressure persists despite providing a person with adequate amounts of intravenous fluid, medications that increase blood pressure (vasopressors) such as norepinephrine and in certain circumstances medications that improve the heart's ability to pump (known as inotropes) such as dobutamine may be given to improve blood flow to the kidney. While a useful vasopressor, there is no evidence to suggest that dopamine is of any specific benefit and may be harmful.
Treatment is directed towards (1) correcting hypotension, hypovolemia, electrolyte imbalances, and metabolic acidosis; (2) improving vascular integrity, and (3) providing an immediate source of glucocorticoids. Rapid correction of hypovolemia is the first priority.
Most patients show dramatic improvement within 24 to 48 hours of appropriate fluid and glucocorticoid therapy. Over the ensuing 2 to 4 days, a gradual transition from IV fluids to oral water and food is undertaken, and maintenance mineralocorticoid and glucocorticoid therapy is initiated. Failure to make this transition smoothly should raise suspicion of insufficient glucocorticoid supplementation, concurrent endocrinopathy (e.g. hypothyroidism), or cocurrent illness (especially renal damage).
Hypoaldosteronism may result in hyperkalemia and is the cause of 'type 4 renal tubular acidosis', sometimes referred to as hyperkalemic RTA or tubular hyperkalemia. However, the acidosis, if present, is often mild. It can also cause urinary sodium wasting, leading to volume depletion and hypotension.
When adrenal insufficiency develops rapidly, the amount of Na+ lost from the extracellular fluid exceeds the amount excreted in the urine, indicating that Na+ also must be entering cells. When the posterior pituitary is intact, salt loss exceeds water loss, and the plasma Na+ falls. However, the plasma volume also is reduced, resulting in hypotension, circulatory insufficiency, and, eventually, fatal shock. These changes can be prevented to a degree by increasing the dietary NaCl intake. Rats survive indefinitely on extra salt alone, but in dogs and most humans, the amount of supplementary salt needed is so large that it is almost impossible to prevent eventual collapse and death unless mineralocorticoid treatment is also instituted.
Cardiac resuscitation guidelines (ACLS/BCLS) advise that Cardiopulmonary resuscitation should be initiated promptly to maintain cardiac output until the PEA can be corrected. The approach in treatment of PEA is to treat the underlying cause, if known (e.g. relieving a tension pneumothorax). Where an underlying cause for PEA cannot be determined and/or reversed, the treatment of pulseless electrical activity is similar to that for asystole. There is no evidence that external cardiac compression can increase cardiac output in any of the many scenarios of PEA, such as hemorrhage, in which impairment of cardiac filling is the underlying mechanism producing loss of a detectable pulse.
An intravenous or intraosseous line should be started to provide medications through. The mainstay of drug therapy for PEA is epinephrine (adrenaline) 1 mg every 3–5 minutes. Although previously the use of atropine was recommended in the treatment of PEA/asystole, this recommendation was withdrawn in 2010 by the American Heart Association due to lack of evidence for therapeutic benefit. Epinephrine too has a limited evidence base, and it is recommended on the basis of its mechanism of action.
Sodium bicarbonate 1meq per kilogram may be considered in this rhythm as well, although there is little evidence to support this practice. Its routine use is not recommended for patients in this context, except in special situations (e.g. preexisting metabolic acidosis, hyperkalemia, tricyclic antidepressant overdose).
All of these drugs should be administered along with appropriate CPR techniques. Defibrillators cannot be used to correct this rhythm, as the problem lies in the response of the myocardial tissue to electrical impulses.
As mentioned, permissive hypotension is unwise. Especially if the crushing weight is on the patient more than 4 hours, but often if it persists more than one hour, careful fluid overload is wise, as well as the administration of intravenous sodium bicarbonate. The San Francisco emergency services protocol calls for a basic adult dose of a 2 L bolus of normal saline followed by 500 ml/h, limited for "pediatric patients and patients with history of cardiac or renal dysfunction."
If the patient cannot be fluid loaded, this may be an indication for a tourniquet to be applied.
Aggressive treatment of high blood lipids is warranted. Low-protein, low-salt diet may result in slower progression of CKD and reduction in proteinuria as well as controlling symptoms of advanced CKD to delay dialysis start. Replacement of erythropoietin and calcitriol, two hormones processed by the kidney, is often necessary in people with advanced disease. Guidelines recommend treatment with parenteral iron prior to treatment with erythropoietin. A target hemoglobin level of 9–12 g/dL is recommended. The normalization of hemoglobin has not been found to be of benefit. It is unclear if androgens help with anemia. Phosphate binders are also used to control the serum phosphate levels, which are usually elevated in advanced chronic kidney disease. Although the evidence for them is limited, phosphodiesterase-5 inhibitors and zinc show potential for helping men with sexual dysfunction.
At stage 5 CKD, renal replacement therapy is usually required, in the form of either dialysis or a transplant.
Generally, angiotensin converting enzyme inhibitors (ACEIs) or angiotensin II receptor antagonists (ARBs) are used, as they have been found to slow the progression. They have also been found to reduce the risk of major cardiovascular events such as myocardial infarction, stroke, heart failure, and death from cardiovascular disease when compared to placebo in individuals with CKD. Furthermore, ACEIs may be superior to ARBs for protection against progression to kidney failure and death from any cause in those with CKD. Aggressive blood pressure lowering decreases peoples risk of death.
Although the use of ACE inhibitors and ARBs represents the current standard of care for people with CKD, people progressively lose kidney function while on these medications, as seen in the IDNT and RENAL studies, which reported a decrease over time in estimated GFR (an accurate measure of CKD progression, as detailed in the K/DOQI guidelines) in people treated by these conventional methods.
The level of digoxin for treatment is typically 0.5-2 ng/mL. Since this is a narrow therapeutic index, digoxin overdose can happen. A serum digoxin concentration of 0.5-0.9 ng/mL among those with heart failure is associated with reduced heart failure deaths and hospitalizations. It is therefore recommended that digoxin concentration be maintained in approximately this range if it is used in heart failure patients.
High amounts of the electrolyte potassium (K+) in the blood (hyperkalemia) is characteristic of digoxin toxicity. Digoxin toxicity increases in individuals who have kidney impairment. This is most often seen in elderly or those with chronic renal insufficiency or end-stage kidney disease.
Aggressiveness of therapy depends on the clinical status of the patient and the nature of the insufficiency (glucocorticoid, mineralocorticoid, or both). Many dogs and cats with primary adrenal insufficiency are presented in Addisonian crisis and require immediate, aggressive therapy. In contrast, secondary insufficiency often has a chronic course.
Hypoadrenocorticism is treated with fludrocortisone (trade name Florinef) or a monthly injection of Percorten-V (desoxycorticosterone pivalate, DOCP) and prednisolone or Zycortal. Routine blood work is necessary in the initial stages until a maintenance dose is established. Most of the medications used in the therapy of hypoadrenocorticism cause excessive thirst and urination. It is absolutely vital to provide fresh drinking water for a canine suffering from this disorder.
If the owner knows about an upcoming stressful situation (shows, traveling etc.), the animals generally need an increased dose of prednisone to help deal with the added stress. Avoidance of stress is important for dogs with hypoadrenocorticism. Physical illness also stresses the body and may mean that the medication(s) need to be adjusted during this time. Most dogs with hypoadrenocorticism have an excellent prognosis after proper stabilization and treatment.
In addition to antidotes, an important treatment for poisoning is the use of hemodialysis. Hemodialysis is used to enhance the removal of unmetabolized ethylene glycol, as well as its metabolites from the body. It has been shown to be highly effective in the removal of ethylene glycol and its metabolites from the blood. Hemodialysis also has the added benefit of correcting other metabolic derangements or supporting deteriorating kidney function. Hemodialysis is usually indicated in patients with severe metabolic acidosis (blood pH less than 7.3), kidney failure, severe electrolyte imbalance, or if the patient's condition is deteriorating despite treatment. Often both antidotal treatment and hemodialysis are used together in the treatment of poisoning. Because hemodialysis will also remove the antidotes from the blood, doses of antidotes need to be increased to compensate. If hemodialysis is not available, then peritoneal dialysis also removes ethylene glycol, although less efficiently.
Following decontamination and the institution of supportive measures, the next priority is inhibition of further ethylene glycol metabolism using antidotes. The antidotes for ethylene glycol poisoning are ethanol and fomepizole. This antidotal treatment forms the mainstay of management of ethylene glycol poisoning. The toxicity of ethylene glycol comes from its metabolism to glycolic acid and oxalic acid. The goal of pharmacotherapy is to prevent the formation of these metabolites. Ethanol acts by competing with ethylene glycol for alcohol dehydrogenase, the first enzyme in the degradation pathway. Because ethanol has a much higher affinity for alcohol dehydrogenase, about a 100-times greater affinity, it successfully blocks the breakdown of ethylene glycol into glycolaldehyde, which prevents the further degradation. Without oxalic acid formation, the nephrotoxic effects can be avoided, but the ethylene glycol is still present in the body. It is eventually excreted in the urine, but supportive therapy for the CNS depression and metabolic acidosis will be required until the ethylene glycol concentrations fall below toxic limits. Pharmaceutical grade ethanol is usually given intravenously as a 5 or 10% solution in 5% dextrose, but it is also sometimes given orally in the form of a strong spirit such as whisky, vodka, or gin.
Fomepizole is a potent inhibitor of alcohol dehydrogenase; similar to ethanol, it acts to block the formation of the toxic metabolites. Fomepizole has been shown to be highly effective as an antidote for ethylene glycol poisoning. It is the only antidote approved by the U.S. Food and Drug Administration for the treatment of ethylene glycol poisoning. Both antidotes have advantages and disadvantages. Ethanol is readily available in most hospitals, is inexpensive, and can be administered orally as well as intravenously. Its adverse effects include intoxication, hypoglycemia in children, and possible liver toxicity. Patients receiving ethanol therapy also require frequent blood ethanol concentration measurements and dosage adjustments to maintain a therapeutic ethanol concentration. Patients therefore must be monitored in an intensive care unit. Alternatively, the adverse side effects of fomepizole are minimal and the approved dosing regimen maintains therapeutic concentrations without the need to monitor blood concentrations of the drug. The disadvantage of fomepizole is that it is expensive. Costing US$1,000 per gram, an average course used in an adult poisoning would cost approximately $3,500 to $4,000. Despite the cost, fomepizole is gradually replacing ethanol as the antidote of choice in ethylene glycol poisoning. Adjunct agents including thiamine and pyridoxine are often given, because they may help prevent the formation of oxalic acid. The use of these agents is based on theoretical observations and there is limited evidence to support their use in treatment; they may be of particular benefit in people who could be deficient in these vitamins such as malnourished or alcoholic patients.
Type 4 RTA is not actually a tubular disorder at all nor does it have a clinical syndrome similar to the other types of RTA described above. It was included in the classification of renal tubular acidoses as it is associated with a mild (normal anion gap) metabolic acidosis due to a "physiological" reduction in proximal tubular ammonium excretion (impaired ammoniagenesis), which is secondary to hypoaldosteronism, and results in a decrease in urine buffering capacity. Its cardinal feature is hyperkalemia, and measured urinary acidification is normal, hence it is often called hyperkalemic RTA or tubular hyperkalemia.
Causes include:
- Aldosterone deficiency (hypoaldosteronism): Primary vs. hyporeninemic (including diabetic nephropathy)
- Aldosterone resistance
1. Drugs: NSAIDs, ACE inhibitors and ARBs, Eplerenone, Spironolactone, Trimethoprim, Pentamidine
2. Pseudohypoaldosteronism