Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment primarily consists of reducing eosinophil levels and preventing further damage to organs. Corticosteroids, such as Prednisone, are good for reducing eosinophil levels and antineoplastics are useful for slowing eosinophil production. Surgical therapy is rarely utilised, however splenectomy can reduce the pain due to spleen enlargement. If damage to the heart (in particular the valves), then prosthetic valves can replace the current organic ones. Follow-up care is vital for the survival of the patient, as such the patient should be checked for any signs of deterioration regularly. After promising results in drug trials (95% efficiency in reducing blood eosinophil count to acceptable levels) it is hoped that in the future hypereosinophilic syndrome, and diseases related to eosinophils such as asthma and eosinophilic granulomatosis with polyangiitis, may be treated with the monoclonal antibody Mepolizumab currently being developed to treat the disease. If this becomes successful, it may be possible for corticosteroids to be eradicated and thus reduce the amount of side effects encountered.
Due to its rarity, no comprehensive treatment studies on eosinophilic myocarditis have been conducted. Small studies and case reports have directed efforts towards: a) supporting cardiac function by relieving heart failure and suppressing life-threatening abnormal heart rhythms; b) suppressing eosinophil-based cardiac inflammation; and c) treating the underlying disorder. In all cases of symptomatic eosinophilic myocarditis that lack specific treatment regimens for the underlying disorder, available studies recommend treating the inflammatory component of this disorder with non-specific immunosuppressive drugs, principally high-dosage followed by slowly-tapering to a low-dosage maintenance corticosteroid regimens. It is recommended that afflicted individuals who fail this regimen or present with cardiogenic shock be treated with other non-specific immunosuppressive drugs viz., azathioprine or cyclophosphamide, as adjuncts to, or replacements for, corticosteroids. However, individuals with an underlying therapeutically accessible disease should be treated for this disease; in seriously symptomatic cases, such individuals may be treated concurrently with a corticosteroid regimen. Examples of diseases underlying eosinophilic myocarditis that are recommended for treatments directed at the underlying disease include:
- Infectious agents: specific drug treatment of helminth and protozoan infections typically takes precedence over non-specific immunosuppressive therapy, which, if used without specific treatment, could worsen the infection. In moderate-to-severe cases, non-specific immunosuppression is used in combination with specific drug treatment.
- Toxic reactions to ingested agents: discontinuance of the ingested agent plus corticosteroids or other non-specific immunosuppressive regimens.
- Clonal eosinophilia caused by mutations in genes that are highly susceptible to tyrosine kinase inhibitors such as "PDGFRA", "PDGFRB", or possibly "FGFR1": first generation tyrosine kinase inhibitors (e.g. imatinib) are recommended for the former two mutations; a later generation tyrosine kinase inhibitors, ponatinib, alone or combined with bone marrow transplantation, may be useful for treating the FGFR1 mutations.
- Clonal hypereosinophilia due to mutations in other genes or primary malignancies: specific treatment regimens used for these pre-malignant or malignant diseases may be more useful and necessary than non-specific immunosuppression.
- Allergic and autoimmune diseases: non-specific treatment regimens used for these diseases may be useful in place of a simple corticosteroid regimen. For example, eosinophilic granulomatosis with polyangiitis can be successfully treated with mepolizumab.
- Idiopathic hypereosinphilic syndrome and lymphocyte-variant hypereosinophilia: corticosteroids; for individuals with these hypereosinophilias that are refractory to or break through corticosteroid therapy and individuals requiring corticosteroid-sparing therapy, recommended alternative drug therapies include hydroxyurea, Pegylated interferon-α, and either one of two tyrosine kinase inhibitors viz., imatinib and mepolizumab).
Treatment is directed toward the underlying cause. However, in primary eosinophilia, or if the eosinophil count must be lowered, corticosteroids such as prednisone may be used. However, immune suppression, the mechanism of action of corticosteroids, can be fatal in patients with parasitosis.
Corticosteroids are the mainstay of therapy with a 90% response rate in some studies. Appropriate duration of steroid treatment is unknown and relapse often necessitates long term treatment. Various steroid sparing agents e.g. sodium cromoglycate (a stabilizer of mast cell membranes), ketotifen (an antihistamine), and montelukast (a selective, competitive leukotriene receptor antagonist) have been proposed, centering on an allergic hypothesis, with mixed results. An elimination diet may be successful if a limited number of food allergies are identified.
The European Medicines Agency (EMA) estimated the prevalence of HES at the time of granting orphan drug designation for HES in 2004 at 1.5 in 100,000 people, corresponding to a current prevalence of about 8,000 in the EU, 5,000 in the U.S., and 2,000 in Japan.
Patients who lack chronic heart failure and those who respond well to Prednisone or a similar drug have a good prognosis. However, the mortality rate rises in patients with anaemia, chromosomal abnormalities or a very high white blood cell count.
Lymphocyte-variant hypereosinophilia usually takes a benign and indolent course. Long term treatment with corticosteroids lowers blood eosinophil levels as well as suppresses and prevents complications of the disease in >80% of cases. However, signs and symptoms of the disease recur in virtually all cases if corticosteroid dosages are tapered in order to reduce the many adverse side effects of corticosteroids. Alternate treatments used to treat corticosteroid resistant disease or for use as corticosteroid-sparing substitutes include interferon-α or its analog, Peginterferon alfa-2a, Mepolizumab (an antibody directed against IL-5), Ciclosporin (an Immunosuppressive drug), imatinib (an inhibitor of tyrosine kinases; numerous tyrosine kinase cell signaling proteins are responsible for the growth and proliferation of eosinophils {see clonal eosinophilia}), methotrexate and Hydroxycarbamide (both are chemotherapy and immunosuppressant drugs), and Alemtuzumab (a antibody that binds to the CD52 antigen on mature lymphocytes thereby marking them for destruction by the body). The few patients who have been treated with these alternate drugs have exhibited good responses in the majority of instances. Reslizumab, a newly developed antibody directed against interleukin 5 that has been successfully used to treat 4 patients with the hypereosinophilic syndrome, may also be of use for lymphocyte-variant eosinophilia. Patients suffering minimal or no disease complications have gone untreated.
In 10% to 25% of patients, mostly 3 to 10 years after initical diagnosis, the indolent course of lymphocyte-variant hypereosinophilia changes. Patients exhibit rapid increases in lymphadenopathy, spleen size, and blood cell numbers, some cells of which take on the appearance of immature and/or malignant cells. Their disease soon thereafter escalates to an angioimmunoblastic T-cell lymphoma, peripheral T cell lymphoma, Anaplastic large-cell lymphoma (which unlike most lymphomas of this type is Anaplastic lymphoma kinase-negative), or Cutaneous T cell lymphoma. The malignantly transformed disease is aggressive and has a poor prognosis. Recommended treatment includes chemotherapy with Fludarabine, Cladribine, or the CHOP combination of drugs followed by bone marrow transplantation.
There are many causes of eosinophilia that may underlie eosinophilic myocarditis. These causes are classified as primary (i.e. a defect intrinsic to the eosinophil cell line), secondary (induced by an underlying disorder that stimulates the proliferation and activation of eosinophils), or idiopathic (i.e. unknown cause). Non-idiopathic causes of the disorder are sub-classified into various forms of allergic, autoimmune, infectious, or malignant diseases and hypersensitivity reactions to drugs, vaccines, or transplanted hearts. While virtually any cause for the elevation and activation of blood eosinophils must be considered as a potential cause for eosinophilic myocarditis, the follow list gives the principal types of eosinophilia known or thought to underlie the disorder.
Primary conditions that may lead to eosinophilic myocarditis are:
- Clonal hypereosinophilia.
- Chronic eosinophilic leukemia.
- The idiopathic hypereosinophilic syndrome.
Secondary conditions that may lead to eosinophilic myocarditis are:
- Infections agents:
- Parasitic worms: various "Ascaris, Strongyloides, Schistosoma, filaria, Trematoda", and "Nematode" species. Parasitic infestations often cause significant heart valve disease along with myocarditis and the disorder in this setting is sometimes termed Tropical endomyocardial fibrosis. While commonly considered to be due to the cited parasites, this particular form of eosinophilic myocarditis may more often develop in individuals with other disorders, e.g. malnutrition, dietary toxins, and genetic predisposition, in addition to or place of round worm infestation.
- Infections by protozoa: various "Toxoplasma gondii, Trypanosoma cruzi, trichinella spiralis, Entamoeba", and "Echinococcus" species.
- Viruses: While some viral infections (e.g. HIV) have been considered causes of eosinophilic endocarditis, a study of 20 patients concluded that viral myocarditis lacks the characteristic of eosinophil-induced damage in hearts taken during cardiac transplantation.
- Allergic and autoimmune diseases such as severe asthma, rhinitis, or urticarial, chronic sinusitis, aspirin-induced asthma, allergic bronchopulmonary aspergillosis, chronic eosinophilic pneumonia, Kimura's disease, polyarteritis nodosa, eosinophilic granulomatosis with polyangiitis (i.e. Churg-Strauss syndrome), and rejection of transplanted hearts.
- Malignancies and/or premalignant hematologic conditions not due to a primary disorder in eosinophils such as Gleich's syndrome, Lymphocyte-variant hypereosinophilia Hodgkin disease, certain T-cell lymphomas, acute myeloid leukemia, the myelodysplastic syndromes, systemic mastocytosis, chronic myeloid leukemia, polycythemia vera, essential thrombocythemia, myelofibrosis, chronic myelomonocytic leukemia, and T-lymphoblastic leukemia/lymphoma-associated or myelodysplastic–myeloproliferative syndrome-associated eosinophilias; IgG4-related disease and Angiolymphoid hyperplasia with eosinophilia as well as non-hematologic cancers such as solid tumors of the lung, gastrointestinal tract, and genitourinary tract.
- Hypersensitivity reactions to agents include:
- Antibiotics/anti-viral agents: various penicillins (e.g. penicillin, ampicillin), cephalosporins (e.g. cephalosporin), tetracyclins (e.g. tetracycline), sulfonamides (e.g. sulfadiazine, sulfafurazole), sulfonylureas, antituburcular drugs (e.g. isoniazid, 4-aminosalicylic acid), linezolid, amphotericin B, chloramphenicol, streptomycin, dapsone, nitrofurantoin, metronidazole, nevirapine, efavirenz, abacavir, nevirapine.
- Anticonvulsants/Antipsychotics/antidepressants: phenindione, phenytoin, phenobarbital, lamotrigine, lamotrigine, clozapine, valproic acid, carbamazepine, desipramine, fluoxetine, amitriptyline, olanzapine.
- Anti-inflammatory agents: ibuprofen, indomethacin, phenylbutazone, oxyphenbutazone, acetazolamide, piroxicam, diclofenac.
- Diuretics: hydrochlorothiazide, spironolactone, chlortalidone.
- ACE inhibitors: captopril, enalapril.
- Other drugs: digoxin, ranitidine, lenalidomide, methyldopa, interleukin 2, dobutamine, acetazolamide.
- Contaminants: Unidentified contaminants inrapeseed oil cause the toxic oil syndrome and in commercial batches of the amino acid, L-tryptophan, cause the eosinophilia–myalgia syndrome.
- Vaccinations: Tetanus toxoid, smallpox, and diphtheria/pertussis/tetanus vaccinations.
Gleich's syndrome or episodic angioedema with eosinophilia is a rare disease in which the body swells up episodically (angioedema), associated with raised antibodies of the IgM type and increased numbers of eosinophil granulocytes, a type of white blood cells, in the blood (eosinophilia). It was first described in 1984.
Its cause is unknown, but it is unrelated to capillary leak syndrome (which may cause similar swelling episodes) and eosinophilia-myalgia syndrome (which features eosinophilia but alternative symptoms). Some studies have shown that edema attacks are associated with degranulation (release of enzymes and mediators from eosinophils), and others have demonstrated antibodies against endothelium (cells lining blood vessels) in the condition.
Gleich's syndrome is not a form of the idiopathic hypereosinophilic syndrome in that there is little or no evidence that it leads to organ damage. Rather, recent studies report that a subset of T cells (a special form of lymphocyte blood cell) found in several Gleich syndrome patients have an abnormal immunophenotype, i.e. they express CD3-, CD4+ cluster of differentiation cell surface antigens. These same aberrant T cell immunophenotypes are found in lymphocyte-variant eosinophilia, a disease in which the aberrant T cells overproduce cytokines such as interleukin 5 which simulate the proliferation of eosinophil precursor cells and are thereby responsible for the eosinophilia. It is suggested that most forms of Gleich's syndrome are due to a similar aberrant T cell mechanism and are a subtype of lymphocyte-variant eosinophilia.
Gleich syndrome has a good prognosis. Attack severity may improve with steroid treatment.
Treatments used to combat autoimmune diseases and conditions caused by eosinophils include:
- corticosteroids – promote apoptosis. Numbers of eosinophils in blood are rapidly reduced
- monoclonal antibody therapy – e.g., mepolizumab or reslizumab against IL-5, prevents eosinophilopoiesis
- antagonists of leukotriene synthesis or receptors
- imatinib (STI571) – inhibits PDGF-BB in hypereosinophilic leukemia
Monoclonal antibodies such as dupilumab and lebrikizumab target IL-13 and its receptor, which reduces eosinophilic inflammation in pateints with asthma due to lowering the number of adhesion molecules present for eosinophils to bind to, thereby decreasing inflammation. Mepolizumab and benralizumab are other treatment options that target the alpha subunit of the IL-5 receptor, thereby inhibiting its function and reducing the number of developing eosinophils as well as the number of eosinophils leading to inflammation through antibody-dependent cell-mediated cytotoxicity and eosinophilic apoptosis.
A wide range of drugs are known to cause hypereosinophilia or eosinophilia accompanied by an array of allergic symptoms. Rarely, these reactions are severe causing, for example, the drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome. While virtually any drug should be considered as a possible cause of these signs and symptoms, the following drugs and drug classes are some of the most frequently reported causes: penicillins, cephalosporins, dapsone, sulfonamides, carbamazepine, phenytoin, lamotrigine, valproic acid, nevirapine, efavirenz, and ibuprofen. These drugs may cause severely toxic reactions such as the DRESS syndrome. Other drugs and drug classes often reported to cause increased blood eosinophil levels accompanied by less severe (e.g. non-DRESS syndrome) symptoms include tetracyclins, doxycycline, linezolid, nitrofurantoin, metronidazole, carbamazepine, phenobarbital, lamotrigine, valproate, desipramine, amitriptyline, fluoxetine, piroxicam, diclofenac, ACE inhibitors, abacavir, nevirapine, ranitidine, cyclosporin, and hydrochlorothiazide.
The toxic oil syndrome is associated with hypereosinophilia/eosinophilia and systemic symptoms due to one or more contaminants in rapeseed oil and the Eosinophilia–myalgia syndrome, also associated with hypereosinophilia, appears due to trace contaminants in certain commercial batches of the amino acid, L-tryptophan.
Hypereosiophilia or eosinophilia may be associated with the following autoimmune diseases: systemic lupus erythematosus eosinophilic fasciitis, eosinophilic granulomatosis with polyangiitis, dermatomyositis, severe rheumatoid arthritis, progressive systemic sclerosis, Sjogren syndrome, thromboangiitis obliterans, Behcet syndrome, IgG4-related disease, inflammatory bowel diseases, sarcoidosis, bullous pemphigoid, and dermatitis herpetiformis.
Allergic reactions to drugs are a common cause of eosinophilia, with manifestations ranging from diffuse maculopapular rash, to severe life-threatening drug reactions with eosinophilia and systemic symptoms (DRESS). Drugs that have been shown to cause DRESS are aromatic anticonvulsants and other antiepileptics, sulfonamides, allopurinol, nonsteroidal anti-inflammatory drugs (NSAIDs), some antipsychotics such as risperidone, and certain antibiotics. Phenibut, an analogue of the neurotransmitter GABA, has also been implicated in high doses. The reaction which has been shown to be T-cell mediated may also cause eosinophilia-myalgia syndrome.
When eosinophilic pneumonia is related to an illness such as cancer or parasitic infection, treatment of the underlying cause is effective in resolving the lung disease. When due to AEP or CEP, however, treatment with corticosteroids results in a rapid, dramatic resolution of symptoms over the course of one or two days. Either intravenous methylprednisolone or oral prednisone are most commonly used. In AEP, treatment is usually continued for a month after symptoms disappear and the x-ray returns to normal (usually four weeks total). In CEP, treatment is usually continued for three months after symptoms disappear and the x-ray returns to normal (usually four months total). Inhaled steroids such as fluticasone have been used effectively when discontinuation of oral prednisone has resulted in relapse.
Because EP affects the lungs, individuals with EP have difficulty breathing. If enough of the lung is involved, it may not be possible for a person to breathe without support. Non-invasive machines such as a bilevel positive airway pressure machine may be used. Otherwise, placement of a breathing tube into the mouth may be necessary and a ventilator may be used to help the person breathe.
Most patients with "ETV6-ACSL6"-related disease present with findings similar to eosinophilia, hypereosinophila, or chronic eosinophilic leukemia; at least 4 cases presented with eosinophilia plus findings of the red blood cell neoplasm, polycythemia vera; three cases resembled acute myelogenous leukemia; and one case presented with findings of a combined Myelodysplastic syndrome/myeloproliferative neoplasm. Best treatments for "ETV6-ACSL6"-related disease are unclear. Patients with the polycythemia vera form of the disease have been treated by reducing the circulating red blood cell load by phlebotomy or suppressing red blood cell formation using hydroxyurea. Individual case studies report that "ETV6-ACSL6"-associated disease is insensitive to tyrosine kinase inhibitors. Best treatment currently available, therefore, may involve chemotherapy and bone marrow transplantion.
At the 2005 American Society of Human Genetics meeting, Francis Collins gave a presentation about a treatment he devised for children affected by Progeria. He discussed how farnesyltransferase inhibitor (FTI) affects H-Ras. After his presentation, members of the Costello Syndrome Family Network discussed the possibility of FTIs helping children with Costello syndrome. Mark Kieran, who presented at the 1st International Costello Syndrome Research Symposium in 2007, agreed that FTIs might help children with Costello syndrome. He discussed with Costello advocates what he had learned in establishing and running the Progeria clinical trial with an FTI, to help them consider next steps.
Another medication that affects H-Ras is Lovastatin, which is planned as a treatment for neurofibromatosis type I. When this was reported in mainstream news, the Costello Syndrome Professional Advisory Board was asked about its use in Costello Syndrome. Research into the effects of Lovastatin was linked with Alcino Silva, who presented his findings at the 2007 symposium. Silva also believed that the medication he was studying could help children with Costello syndrome with cognition.
A third medication that might help children with Costello syndrome is a MEK inhibitor that helps inhibit the pathway closer to the cell nucleus.
As there is no known cure, Loeys–Dietz syndrome is a lifelong condition. Due to the high risk of death from aortic aneurysm rupture, patients should be followed closely to monitor aneurysm formation, which can then be corrected with interventional radiology or vascular surgery.
Previous research in laboratory mice has suggested that the angiotensin II receptor antagonist losartan, which appears to block TGF-beta activity, can slow or halt the formation of aortic aneurysms in Marfan syndrome. A large clinical trial sponsored by the National Institutes of Health is currently underway to explore the use of losartan to prevent aneurysms in Marfan syndrome patients. Both Marfan syndrome and Loeys–Dietz syndrome are associated with increased TGF-beta signaling in the vessel wall. Therefore, losartan also holds promise for the treatment of Loeys–Dietz syndrome. In those patients in which losartan is not halting the growth of the aorta, irbesartan has been shown to work and is currently also being studied and prescribed for some patients with this condition.
If an increased heart rate is present, atenolol is sometimes prescribed to reduce the heart rate to prevent any extra pressure on the tissue of the aorta. Likewise, strenuous physical activity is discouraged in patients, especially weight lifting and contact sports.
In terms of treatment/management one should observe what signs or symptoms are present and therefore treat those as there is no other current guideline. The affected individual should be monitored for cancer of:
- Thyroid
- Breast
- Renal
In terms of treatment of oculocerebrorenal syndrome for those individuals who are affected by this condition includes the following:
- Glaucoma control (via medication)
- Nasogastric tube feeding
- Physical therapy
- Clomipramine
- Potassium citrate
Acute eosinophilic leukemia is treated as other subtypes of AML. Response to treatment is approximately the same as in other types of AML.
There is no medical treatment for either syndrome but there are some recommendations that can help with prevention or early identification of some of the problems. Children with either syndrome should have their hearing tested, and adults should be aware that the hearing loss may not develop until the adult years. Yearly visits to an ophthalmologist or other eye care professional who has been informed of the diagnosis of Stickler or Marshall syndrome is important for all affected individuals. Children should have the opportunity to have myopia corrected as early as possible, and treatment for cataracts or detached retinas may be more effective with early identification. Support for the joints is especially important during sports, and some recommend that contact sports should be avoided by those who have very loose joints.
Lymphocyte-variant hypereosinophila, also termed lymphocyte variant eosinophilia, is a rare disorder in which eosinophilia or hypereosinophilia (i.e. a large or extremely large increase in the number of eosinophils in the blood circulation) is caused by aberrant population of lymphocytes. These aberrant lymphocytes function abnormally by stimulating the proliferation and maturation of bone marrow eosinophil-precursor cells termed colony forming unit-Eosinophils or CFU-Eos.
The overly stimulated CFU-Eos cells mature to apparently normal eosinophils, enter the circulation, and may accumulate in, and severely damage, various tissues. The disorder is usually indolent or slowly progressive but may proceed to a leukemic phase and at this phases is sometimes classified as acute eosinophilic leukemia. Hence, lymphocyte-variant hypereosinophilia can be regarded as a precancerous disease.
The order merits therapeutic intervention to avoid or reduce eosinophil-induced tissue injury and to treat its leukemic phase. The latter phase of the disease is aggressive and typically responds relatively poorly to anti-leukemia chemotherapeutic drug regimens.
Patients with hematological disease related to the cited "FLT3" fusion genes present with either a myeloid or lymphoid neoplasm plus eosinophilia. Four of 6 patients with "ETV6-FLT3"-related disease, a patient with "GOLGB1-FLT3"-related disease, and a patient with "TRIP11-FLT3"-related disease presented with findings similar to T-cell lymphoma while a patient with "SPTBN1-FLT3"-related disease had findings of chronic myelogenous leukemia. Two patients with "ETV6-FLT3"-related disease experienced complete hematologic remissions when treated with a multi-kinase inhibitor, sunitinib, that has inhibitory activity against FLT3 protein. However, these remissions were short-lived. A third patient with "ETV6-FLT3"-related disease was treated with a similarly active kinase inhibitor, sorafenib. This patient achieved a complete hematological response and was then given a hematopoietic stem cell transplantation. The latter treatment regimen, FLT3 inhibitor followed by hematopoietic stem cell transplantation, may be the best approach currently available for treating "FLT3"-releated hematological disease.
Treatment for Romano–Ward syndrome can "deal with" the imbalance between the right and left sides of the sympathetic nervous system which may play a role in the cause of this syndrome. The imbalance can be temporarily abolished with a left stellate ganglion block, which shorten the QT interval. If this is successful, surgical ganglionectomy can be performed as a permanent treatment.Ventricular dysrhythmia may be managed by beta-adrenergic blockade (propranolol)
Treatment of Roberts syndrome is individualized and specifically aimed at improving the quality of life for those afflicted with the disorder. Some of the possible treatments include: surgery for the cleft lip and palate, correction of limb abnormalities (also through surgery), and improvement in prehensile hand grasp development.
Eosinophilic gastroenteritis (EG) is a rare and heterogeneous condition characterized by patchy or diffuse eosinophilic infiltration of gastrointestinal (GI) tissue, first described by Kaijser in 1937. Presentation may vary depending on location as well as depth and extent of bowel wall involvement and usually runs a chronic relapsing course. It can be classified into mucosal, muscular and serosal types based on the depth of involvement. Any part of the GI tract can be affected, and isolated biliary tract involvement has also been reported.
The stomach is the organ most commonly affected, followed by the small intestine and the colon.