Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Medical treatment with anti-vertigo medications may be considered in acute, severe exacerbation of BPPV, but in most cases are not indicated. These primarily include drugs of the anti-histamine and anti-cholinergic class, such as meclizine and hyoscine butylbromide (scopolamine) respectively. The medical management of vestibular syndromes has become increasingly popular over the last decade, and numerous novel drug therapies (including existing drugs with new indications) have emerged for the treatment of vertigo/dizziness syndromes. These drugs vary considerably in their mechanisms of action, with many of them being receptor- or ion channel-specific. Among them are betahistine or dexamethasone/gentamicin for the treatment of Ménière's disease, carbamazepine/oxcarbazepine for the treatment of paroxysmal dysarthria and ataxia in multiple sclerosis, metoprolol/topiramate or valproic acid/tricyclic antidepressant for the treatment of vestibular migraine, and 4-aminopyridine for the treatment of episodic ataxia type 2 and both downbeat and upbeat nystagmus. These drug therapies offer symptomatic treatment, and do not affect the disease process or resolution rate. Medications may be used to suppress symptoms during the positioning maneuvers if the patient's symptoms are severe and intolerable. More dose-specific studies are required, however, in order to determine the most effective drug(s) for both acute symptom relief and long-term remission of the condition.
Surgical treatments, such as a semi-circular canal occlusion, do exist for BPPV, but carry the same risk as any neurosurgical procedure. Surgery is reserved as a last resort option for severe and persistent cases which fail vestibular rehabilitation (including particle repositioning and habituation therapy).
Definitive treatment depends on the underlying cause of vertigo. Ménière's disease patients have a variety of treatment options to consider when receiving treatment for vertigo and tinnitus including: a low-salt diet and intratympanic injections of the antibiotic gentamicin or surgical measures such as a shunt or ablation of the labyrinth in refractory cases.
Common drug treatment options for vertigo may include the following:
- Anticholinergics such as hyoscine hydrobromide (scopolamine)
- Anticonvulsants such as topiramate or valproic acid for vestibular migraines
- Antihistamines such as betahistine, dimenhydrinate, or meclizine, which may have antiemetic properties
- Beta blockers such as metoprolol for vestibular migraine
- Corticosteroids such as methylprednisolone for inflammatory conditions such as vestibular neuritis or dexamethasone as a second-line agent for Ménière's disease
All cases of decompression sickness should be treated initially with 100% oxygen until hyperbaric oxygen therapy (100% oxygen delivered in a high-pressure chamber) can be provided. Several treatments may be necessary, and treatment will generally be repeated until either all symptoms resolve, or no further improvement is apparent.
There is no cure for Ménière's disease but medications, diet, physical therapy and counseling, and some surgical approaches can be used to manage it.
During MD episodes, medications to reduce nausea are used, as are drugs to reduce the anxiety caused by vertigo.
For longer term treatment to stop progression, the evidence base is weak for all treatments.
Although a causal relation between allergy and Menière's disease is uncertain, medication to control allergies may be helpful.
Diuretics are widely used to manage Ménière's on the theory that it reduces fluid buildup in the ear. Based on evidence from multiple but small clinical trials, diuretics appear to be useful for reducing the frequency of episodes of dizziness, but do not seem to prevent hearing loss.
In cases where there is significant hearing loss and continuing severe episodes of vertigo, a chemical labyrinthectomy, in which a drug (such as gentamicin) that "kills" parts or most of the vestibular apparatus is injected into the middle ear.
Treatment of migraine-associated vertigo is the same as the treatment for migraine in general.
Treatment of Foix–Chavany–Marie syndrome depends on the onset of symptoms and involves a multidisciplinary approach. Drugs are used in neurological recovery depending on the etiological classification of FCMS. FCMS caused by epilepsy, specifically resulting in the development of lesions in the bilateral and subcortical regions of the brain can be treated using antiepileptic drugs to reverse abnormal EEG changes and induce complete neurological recovery. In addition, a hemispherectomy can be performed to reverse neurological deficits and control the seizures. This procedure can result in a complete recovery from epileptic seizures. Physical therapy is also used to manage symptoms and improve quality of life. Classical FCMS resulting in the decline of ones ability to speak and swallow can be treated using neuromuscular electrical stimulation and traditional dysphagia therapy. Speech therapy further targeting dysphagia can strengthen oral musculature using modified feeding techniques and postures. Therapeutic feedings include practicing oral and lingual movements using ice chips. In addition, different procedures can be performed by a neurosurgeon to alleviate some symptoms.
As of 2014, no clinical trials had been conducted to determine what treatments are safe and effective; a few case reports had been published describing treatment of small numbers of people (two to twelve per report) with clomipramine, flunarizine, nifedipine, topiramate, carbamazepine, methylphenidate. Studies suggest that education and reassurance can reduce the frequency of EHS episodes. There is some evidence that individuals with EHS rarely report episodes to medical professionals.
As of 2012 there has only been one small-scale study comparing CROS systems.
One study of the BAHA system showed a benefit depending on the patient's transcranial attenuation. Another study showed that sound localisation was not improved, but the effect of the head shadow was reduced.
The only treatment for MWS is only symptomatic, with multidisciplinary management
The age when outer ear surgery can be attempted depends upon the technique chosen. The earliest is 7 for Rib Cartilage Grafts. However, some surgeons recommend waiting until a later age, such as 8–10 when the ear is closer to adult size. External ear prostheses have been made for children as young as 5.
For auricular reconstruction, there are several different options:
1. "Rib Cartilage Graft Reconstruction:" This surgery may be performed by specialists in the technique. It involves sculpting the patient's own rib cartilage into the form of an ear. Because the cartilage is the patient's own living tissue, the reconstructed ear continues to grow as the child does. In order to be sure that the rib cage is large enough to provide the necessary donor tissue, some surgeons wait until the patient is 8 years of age; however, some surgeons with more experience with this technique may begin the surgery on a child aged six. The major advantage of this surgery is that the patient's own tissue is used for the reconstruction. This surgery varies from two to four stages depending on the surgeon's preferred method. A novel one stage ear reconstruction technique is performed by a few select surgeons. One team is able to reconstruct the entire external ear and ear canal in one operation.
2. "Reconstruct the ear using a polyethylene plastic implant (also called Medpor):" This is a 1–2 stage surgery that can start at age 3 and can be done as an outpatient without hospitalization. Using the porous framework, which allows the patient's tissue to grow into the material and the patient's own tissue flap, a new ear is constructed in a single surgery. A small second surgery is performed in 3–6 months if needed for minor adjustments. This surgery should only be performed by experts in the techniques involved. The use of porous polyethylene implants for ear reconstruction was initiated in the 1980s by Alexander Berghaus.
3. "Ear Prosthesis:" An auricular (ear) prosthesis is custom made by an anaplastologist to mirror the other ear. Prosthetic ears can appear very realistic. They require a few minutes of daily care. They are typically made of silicone, which is colored to match the surrounding skin and can be attached using either adhesive or with titanium screws inserted into the skull to which the prosthetic is attached with a magnetic or bar/clip type system. These screws are the same as the BAHA (bone anchored hearing aid) screws and can be placed simultaneously. The biggest advantage over any surgery is having a prosthetic ear that allows the affected ear to appear as normal as possible to the natural ear. The biggest disadvantage is the daily care involved and knowing that the prosthesis is not real.
After diagnosis, it is important for patients to be continually monitored. The most common treatment for PPNAD is bilateral laparoscopic adrenalectomy; the process by which both adrenal glands are removed by a small incision.
Patients who have received this treatment will be prescribed mineralocorticoid and glucocorticoid steroids as they are no longer being naturally produced.
This is a treatment which has been used and refined since 1984.
This can be done by annual evaluations by multidiciplinary team involving otolaryngologist, clinical geneticist, a pediatrician, the expertise of an educator of the deaf, a neurologist is appropriate.
Treatment most commonly involves the removal of the complete lesion during a single procedure, via the frontonasal bone flaps; recurrence is likely. Ablation treatment with an looks to be a possibility for permanent removal.
Some success has been seen using intralesional injections of formalin, performed by endoscopy.
Treating auditory verbal agnosia with intravenous immunoglobulin (IVIG) is controversial because of its inconsistency as a treatment method. Although IVIG is normally used to treat immune diseases, some individuals with auditory verbal agnosia have responded positively to the use of IVIG. Additionally, patients are more likely to relapse when treated with IVIG than other pharmacological treatments. IVIG is, thus, a controversial treatment as its efficacy in treating auditory verbal agnosia is dependent upon each individual and varies from case to case.
School-age children with unilateral hearing loss tend to have poorer grades and require educational assistance. This is not the case with everyone, however. They can also be perceived to have behavioral issues.
People afflicted with UHL have great difficulty locating the source of any sound. They may be unable to locate an alarm or a ringing telephone. The swimming game Marco Polo is generally impossible for them.
When wearing stereo headphones, people with unilateral hearing loss can hear only one channel, hence the panning information (volume and time differences between channels) is lost; some instruments may be heard better than others if they are mixed predominantly to one channel, and in extreme cases of sound production, such as complete stereo separation or stereo-switching, only part of the composition can be heard; in games using 3D audio effects, sound may not be perceived appropriately due to coming to the disabled ear. This can be corrected by using settings in the software or hardware—audio player, OS, amplifier or sound source—to adjust balance to one channel (only if the setting downmixes sound from both channels to one), or there may be an option to outright downmix both channels to mono. Such settings may be available via the device or software's accessibility features. As hardware solutions, stereo-to-mono adapters may be available to receive mono sound in stereo headphones from a stereo sound source, or some monaural headsets for cellphones and VOIP communication may combine stereo sound to mono (though headphones for voice communication typically offer lower audio quality than headphones targeted for listening to music). From the standpoint of sound fidelity, sound information in downmixed mono channel will, in any case, differ from that in either of the source channels or what is perceived by a normal-hearing person, thus technically some audio quality is lost (for example, the same or slightly different sound occurrences in two channels, with time delay between them, will be merged to a sound in the mono channel that unavoidably cannot correspond to the intent of the sound producer); however, such loss is most probably unnoticeable, especially compared to other distortions inherent in sound reproduction, and to the person's problems from hearing loss.
Typically, testing is first done to determine the quality of hearing. This can be done as early as in the first two weeks with a BAER test (Brain Stem Auditory Response Test). At age 5–6, CT or CAT scans of the middle ear can be done to elucidate its development and clarify which patients are appropriate candidates for surgery to improve hearing. For younger individuals, this is done under sedation.
The hearing loss associated with congenital aural atresia is a conductive hearing loss—hearing loss caused by inefficient conduction of sound to the inner ear. Essentially, children with aural atresia have hearing loss because the sound cannot travel into the (usually) healthy inner ear—there is no ear canal, no eardrum, and the small ear bones (malleus/hammer, incus/anvil, and stapes/stirrup) are underdeveloped. "Usually" is in parentheses because rarely, a child with atresia also has a malformation of the inner ear leading to a sensorineural hearing loss (as many as 19% in one study). Sensorineural hearing loss is caused by a problem in the inner ear, the cochlea. Sensorineural hearing loss is not correctable by surgery, but properly fitted and adjusted hearing amplification (hearing aids) generally provide excellent rehabilitation for this hearing loss. If the hearing loss is severe to profound in both ears, the child may be a candidate for a cochlear implant (beyond the scope of this discussion).
Unilateral sensorineural hearing loss was not generally considered a serious disability by the medical establishment before the nineties; it was thought that the afflicted person was able to adjust to it from birth. In general, there are exceptional advantages to gain from an intervention to enable hearing in the microtic ear, especially in bilateral microtia. Children with untreated unilateral sensorineural hearing loss are more likely to have to repeat a grade in school and/or need supplemental services (e.g., FM system – see below) than their peers.
Children with unilateral sensorineural hearing loss often require years of speech therapy in order to learn how to enunciate and understand spoken language. What is truly unclear, and the subject of an ongoing research study, is the effect of unilateral conductive hearing loss (in children with unilateral aural atresia) on scholastic performance. If atresia surgery or some form of amplification is not used, special steps should be taken to ensure that the child is accessing and understanding all of the verbal information presented in school settings. Recommendations for improving a child's hearing in the academic setting include preferential seating in class, an FM system (the teacher wears a microphone, and the sound is transmitted to a speaker at the child's desk or to an ear bud or hearing aid the child wears), a bone-anchored hearing aid (BAHA), or conventional hearing aids. Age for BAHA implantation depends on whether the child is in Europe (18 months) or the US (age 5). Until then it is possible to fit a BAHA on a softband
It is important to note that not all children with aural atresia are candidates for atresia repair. Candidacy for atresia surgery is based on the hearing test (audiogram) and CT scan imaging. If a canal is built where one does not exist, minor complications can arise from the body's natural tendency to heal an open wound closed. Repairing aural atresia is a very detailed and complicated surgical procedure which requires an expert in atresia repair. While complications from this surgery can arise, the risk of complications is greatly reduced when using a highly experienced otologist. Atresia patients who opt for surgery will temporarily have the canal packed with gelatin sponge and silicone sheeting to prevent closure. The timing of ear canal reconstruction (canalplasty) depends on the type of external ear (Microtia) repair desired by the patient and family. Two surgical teams in the USA are currently able to reconstruct the canal at the same time as the external ear in a single surgical stage (one stage ear reconstruction).
In cases where a later surgical reconstruction of the external ear of the child might be possible, positioning of the BAHA implant is critical. It may be necessary to position the implant further back than usual to enable successful reconstructive surgery – but not so far as to compromise hearing performance. If the reconstruction is ultimately successful, it is easy to remove the percutaneous BAHA abutment. If the surgery is unsuccessful, the abutment can be replaced and the implant re-activated to restore hearing.
The evidence for surgical therapy is poor. Surgery is normally recommended only after medication has proved ineffective, or if side effects of medication are intolerable. While there may be pain relief after surgery, there is also a considerable risk of side effects, such as facial numbness after the procedure. Microvascular decompression appears to result in the longest pain relief. Percutaneous radiofrequency thermorhizotomy may also be effective as may stereotactic radiosurgery; however the effectiveness decreases with time.
Surgical procedures can be separated into non-destructive and destructive:
There is no cure for ASD and proper treatment depends on the case and what is most struggled with. Autism spectrum disorder is like many other disorders where when diagnosed early, can be better treated. Different types of therapy are helpful such as music therapy and physical therapy. Other treatments include auditory training, discrete trial training, facilitated communication, and sensory integration therapy.
Dietary modifications may be of benefit to a small proportion of children with ADHD. A 2013 meta-analysis found less than a third of children with ADHD see some improvement in symptoms with free fatty acid supplementation or decreased eating of artificial food coloring. These benefits may be limited to children with food sensitivities or those who are simultaneously being treated with ADHD medications. This review also found that evidence does not support removing other foods from the diet to treat ADHD. A 2014 review found that an elimination diet results in a small overall benefit. A 2016 review stated that the use of a gluten-free diet as standard ADHD treatment is discouraged. Iron, magnesium and iodine may also have an effect on ADHD symptoms. There is a small amount of evidence that lower tissue zinc levels may be associated with ADHD. In the absence of a demonstrated zinc deficiency (which is rare outside of developing countries), zinc supplementation is not recommended as treatment for ADHD. However, zinc supplementation may reduce the minimum effective dose of amphetamine when it is used with amphetamine for the treatment of ADHD. There is evidence of a modest benefit of omega 3 fatty acid supplementation, but it is not recommended in place of traditional medication.
Although ADHD has most often been treated with medication, medications do not cure ADHD. They are used solely to treat the symptoms associated with this disorder and the symptoms will come back once the medication stops.
All destructive procedures will cause facial numbness, post relief, as well as pain relief.
- Percutaneous techniques which all involve a needle or catheter entering the face up to the origin where the nerve splits into three divisions and then damaging this area, purposely, to produce numbness but also stop pain signals. These techniques are proven effective especially in those where other interventions have failed or in those who are medically unfit for surgery such as the elderly.
- Balloon compression - inflation of a balloon at this point causing damage and stopping pain signals.
- Glycerol injection- deposition of a corrosive liquid called glycerol at this point causes damage to the nerve to hinder pain signals.
- Radiofrequency thermocoagulation rhizotomy - application of a heated needle to damage the nerve at this point.
- Stereotactic radiosurgery is a form of radiation therapy that focuses high-power energy on a small area of the body
Treatment of ADHD often includes a combination of psychological, behavioural, pharmaceutical and educational advice and interventions.
Medications commonly used in the treatment of ADHD are primarily stimulants such as methylphenidate and lisdexamphetamine and non-stimulants such as atomoxetine.
SSRI antidepressants may be unhelpful, and could worsen symptoms of ADHD.
However ADHD is often misdiagnosed as depression, particularly when no hyperactivity is present.
Stimulants are typically formulated in fast and slow-acting as well as short and long-acting formulations. The fast-acting amphetamine mixed salts (Adderall) and its derivatives, with short and long-acting formulations bind to the trace amine associated receptor and triggers the release of dopamine into the synaptic cleft. They may have a better cardiovascular disease profile than methylphenidate and potentially better tolerated.
The fast-acting methylphenidate (Ritalin), is a dopamine reuptake inhibitor. In the short term, methylphenidate is well tolerated. However, long term studies have not been conducted in adults and concerns about increases in blood pressure have not been established.
The slow and long-acting nonstimulant atomoxetine (Strattera), is primarily a norepinephrine reuptake inhibitor and, to a lesser extent, a dopamine reuptake inhibitor. It may be more effective for those with predominantly inattentive concentration. It is sometimes prescribed in adults who do not get enough vigilant concentration response from mixed amphetamine salts (Adderall) or get too many side effects. It is also approved for ADHD by the US Food and Drug Administration.
The use of cholinergic adjunctive medications is uncommon and their clinical effects are poorly researched; consequently, cholinergics such as galantamine or varenicline would be off label use for ADHD. New nicotinic cholinergic medications in development for ADHD are pozanicline, ABT-418, and .
MCDK is not treatable. However, the patient is observed periodically for the first few years during which ultrasounds are generally taken to ensure the healthy kidney is functioning properly and that the unhealthy kidney is not causing adverse effects. In severe cases MCDK can lead to neonatal fatality (in bilateral cases), however in unilateral cases the prognosis might be better (it would be dependent on associated anomalies).