Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Lesions of paravaccinia virus will clear up with little to no scaring after 4 to 8 weeks. An antibiotic may be prescribed by a physician to help prevent bacterial infection of the lesion area. In rare cases, surgical removal of the lesions can be done to help increase rate of healing, and help minimize risk of bacterial or fungal infection. Upon healing, no long term side effects have been reported.
Ribavirin is one medication which has shown good potential for the treatment of HPIV-3 given recent in-vitro tests (in-vivo tests show mixed results). Ribavirin is a broadscale anti-viral and is currently being administered to those who are severely immuno-compromised, despite the lack of conclusive evidence for its use. Protein inhibitors and novel forms of medication have also been proposed to relieve the symptoms of infection.
Furthermore, antibiotics may be used if a secondary bacterial infection develops. Corticosteroid treatment and nebulizers are also a first line choice against croup if breathing difficulties ensue.
When infection attacks the body, "anti-infective" drugs can suppress the infection. Several broad types of anti-infective drugs exist, depending on the type of organism targeted; they include antibacterial (antibiotic; including antitubercular), antiviral, antifungal and antiparasitic (including antiprotozoal and antihelminthic) agents. Depending on the severity and the type of infection, the antibiotic may be given by mouth or by injection, or may be applied topically. Severe infections of the brain are usually treated with intravenous antibiotics. Sometimes, multiple antibiotics are used in case there is resistance to one antibiotic. Antibiotics only work for bacteria and do not affect viruses. Antibiotics work by slowing down the multiplication of bacteria or killing the bacteria. The most common classes of antibiotics used in medicine include penicillin, cephalosporins, aminoglycosides, macrolides, quinolones and tetracyclines.
Not all infections require treatment, and for many self-limiting infections the treatment may cause more side-effects than benefits. Antimicrobial stewardship is the concept that healthcare providers should treat an infection with an antimicrobial that specifically works well for the target pathogen for the shortest amount of time and to only treat when there is a known or highly suspected pathogen that will respond to the medication.
Supportive care must be provided to animals that have clinical signs. Subcutaneous or intravenous fluids are given to dehydrated animals, and severely anemic dogs may require a blood transfusion. Treatment for ehrlichiosis involves the use of antibiotics such as tetracycline or doxycycline for a period of at least six to eight weeks; response to the drugs may take one month. Treatment with macrolide antibiotics like clarithromycin and azithromycin is being studied. In addition, steroids may be indicated in severe cases in which the level of platelets is so low that the condition is life-threatening.
Currently, no specific treatment for chikungunya is available. Supportive care is recommended, and symptomatic treatment of fever and joint swelling includes the use of nonsteroidal anti-inflammatory drugs such as naproxen, non-aspirin analgesics such as paracetamol (acetaminophen) and fluids. Aspirin is not recommended due to the increased risk of bleeding. Despite anti-inflammatory effects, corticosteroids are not recommended during the acute phase of disease, as they may cause immunosuppression and worsen infection.
Passive immunotherapy has potential benefit in treatment of chikungunya. Studies in animals using passive immunotherapy have been effective, and clinical studies using passive immunotherapy in those particularly vulnerable to severe infection are currently in progress. Passive immunotherapy involves administration of anti-CHIKV hyperimmune human intravenous antibodies (immunoglobulins) to those exposed to a high risk of chikungunya infection. No antiviral treatment for chikungunya virus is currently available, though testing has shown several medications to be effective "in vitro".
Most cases of HHV-6 infection get better on their own. If encephalitis occurs ganciclovir or foscarnet may be useful.
The Jarisch-Herxheimer reaction, which is the response to the body after endotoxins are released by the death of harmful organisms in the human body, starts usually during the first day of antibiotic treatment. The reaction increases the person's body temperature, decreases the overall blood pressure (both systolic and diastolic levels), and results in leukopenia and rigors in the body. This reaction can occur during any treatment of spirochete diseases.
It is important to realize that syphilis can recur. An individual who has had the disease once, even if it has been treated, does not prevent the person from experiencing recurrence of syphilis. Individuals can be re-infected, and because syphilis sores can be hidden, it may not be obvious that the individual is infected with syphilis. In these cases, it is vital to become tested and treated immediately to reduce spread of the infection.
Doxycycline and minocycline are the medications of choice. For people allergic to antibiotics of the tetracycline class, rifampin is an alternative. Early clinical experience suggested that chloramphenicol may also be effective, however, in vitro susceptibility testing revealed resistance.
Tick control is the most effective method of prevention, but tetracycline at a lower dose can be given daily for 200 days during the tick season in endemic regions.
In those who have more than two weeks of arthritis, ribavirin may be useful. The effect of chloroquine is not clear. It does not appear to help acute disease, but tentative evidence indicates it might help those with chronic arthritis. Steroids do not appear to be an effective treatment. NSAIDs and simple analgesics can be used to provide partial symptom relief in most cases. Methotrexate, a drug used in the treatment of rheumatoid arthritis, has been shown to have benefit in treating inflammatory polyarthritis resulting from chikungunya, though the drug mechanism for improving viral arthritis is unclear.
The most popular treatment forms for any type of syphilis uses penicillin, which has been an effective treatment used since the 1940s.
Other forms also include Benzathine penicillin, which is usually used for primary and secondary syphilis (it has no resistance to penicillin however). Benzathine penicillin is used for long acting form, and if conditions worsen, penicillin G is used for late syphilis.
Paravaccinia virus originates from livestock infected with bovine papular stomatitis. When a human makes physical contact with the livestock's muzzle, udders, or an infected area, the area of contact will become infected. Livestock may not show symptoms of bovine papular stomatitis and still be infected and contagious. Paravaccinia can enter the body though all pathways including: skin contact by mechanical means, through the respiratory tract, or orally. Oral or respiratory contraction may be more likely to cause systemic symptoms such as lesions across the whole body
A person who has not previously been infected with paravaccinia virus should avoid contact with infected livestock to prevent contraction of disease. There is no commercially available vaccination for cattle or humans against paravaccinia. However, following infection, immunization has been noted in humans, making re-infection difficult. Unlike other pox viruses, there is no record of contracting paravaccinia virus from another human. Further, cattle only show a short immunization after initial infection, providing opportunity to continue to infect more livestock and new human hosts.
There is antibiotic therapy for secondary infections caused by the parasite. However, surgical removal is usually the only way to get rid of the parasites.
No treatment is necessary in asymptomatic patients, but there is no antiparasitic chemotherapy or medical treatment available for pentastomiasis. Surgery may be needed for infection by many parasites. Infection can be prevented by washing the hands after touching snake secretions or meat and cooking snake meat thoroughly prior to consumption.
There is no specific vaccine against or treatment for exanthema subitum, and most children with the disease are not seriously ill.
Currently, there is no proven, safe treatment for monkeypox. The people who have been infected can be vaccinated up to 14 days after exposure.
Despite decades of research, no vaccines currently exist.
Recombinant technology has however been used to target the formation of vaccines for HPIV-1, -2 and -3 and has taken the form of several live-attenuated intranasal vaccines. Two vaccines in particular were found to be immunogenic and well tolerated against HPIV-3 in phase I trials. HPIV-1 and -2 vaccine candidates remain less advanced.
Vaccine techniques which have been used against HPIVs are not limited to intranasal forms, but also viruses attenuated by cold passage, host range attenuation, chimeric construct vaccines and also introducing mutations with the help of reverse genetics to achieve attenuation.
Maternal antibodies may offer some degree of protection against HPIVs during the early stages of life via the colostrum in breast milk.
No human vaccine is available for ehrlichiosis. Tick control is the main preventive measure against the disease. However, in late 2012 a breakthrough in the prevention of CME (canine monocytic ehrlichiosis) was announced when a vaccine was accidentally discovered by Prof. Shimon Harrus, Dean of the Hebrew University of Jerusalem's Koret School of Veterinary Medicine.
There is usually an indication for a specific identification of an infectious agent only when such identification can aid in the treatment or prevention of the disease, or to advance knowledge of the course of an illness prior to the development of effective therapeutic or preventative measures. For example, in the early 1980s, prior to the appearance of AZT for the treatment of AIDS, the course of the disease was closely followed by monitoring the composition of patient blood samples, even though the outcome would not offer the patient any further treatment options. In part, these studies on the appearance of HIV in specific communities permitted the advancement of hypotheses as to the route of transmission of the virus. By understanding how the disease was transmitted, resources could be targeted to the communities at greatest risk in campaigns aimed at reducing the number of new infections. The specific serological diagnostic identification, and later genotypic or molecular identification, of HIV also enabled the development of hypotheses as to the temporal and geographical origins of the virus, as well as a myriad of other hypothesis. The development of molecular diagnostic tools have enabled physicians and researchers to monitor the efficacy of treatment with anti-retroviral drugs. Molecular diagnostics are now commonly used to identify HIV in healthy people long before the onset of illness and have been used to demonstrate the existence of people who are genetically resistant to HIV infection. Thus, while there still is no cure for AIDS, there is great therapeutic and predictive benefit to identifying the virus and monitoring the virus levels within the blood of infected individuals, both for the patient and for the community at large.
Some ways to prevent airborne diseases include washing hands, using appropriate hand disinfection, getting regular immunizations against diseases believed to be locally present, wearing a respirator and limiting time spent in the presence of any patient likely to be a source of infection.
Exposure to a patient or animal with an airborne disease does not guarantee receiving the disease. Because of the changes in host immunity and how much the host was exposed to the particles in the air makes a difference to how the disease affects the body.
Antibiotics are not prescribed for patients to control viral infections. They may however be prescribed to a flu patient for instance, to control or prevent bacterial secondary infections. They also may be used in dealing with air-borne bacterial primary infections, such as pneumonic plague.
Additionally the Centers for Disease Control and Prevention (CDC) has told consumers about vaccination and following careful hygiene and sanitation protocols for airborne disease prevention. Consumers also have access to preventive measures like UV Air purification devices that FDA and EPA-certified laboratory test data has verified as effective in inactivating a broad array of airborne infectious diseases. Many public health specialists recommend social distancing to reduce the transmission of airborne infections.
The affected areas are treated with iodine solutions. A common method to achieve this is to give the cattle sodium iodide orally on a regular treatment schedule. Antibiotics such as Tetracyclines are also used. These two treatment methods can be used alone or together; simultaneous use is considered more aggressive. Killing the bacteria that cause the infection is the ultimately purpose of these treatment methods. However, they are seldom effective unless treatment is started very early.
It is notable that surgery is not typically considered for treatment of cattle as it is in extreme human cases.
Surgical excision or cryosurgery is the treatment of choice. Treatment with antifungals has been considered ineffective, but the use of clofazimine and dapsone in patients with leprosy and lobomycosis has been found to improve the latter. This treatment regimen, with concomitant itraconazole, has been used to prevent recurrence after surgery.
One strategy for the prevention of infection transmission between cats and people is to better educate people on the behaviour that puts them at risk for becoming infected.
Those at the highest risk of contracting a disease from a cat are those with behaviors that include: being licked, sharing food, sharing kithchen utensils, kissing, and sleeping with a cat. The very young, the elderly and those who are immunocompromised increase their risk of becoming infected when sleeping with their cats (and dogs). The CDC recommends that cat owners not allow a cat to lick your face because it can result in disease transmission. If someone is licked on their face, mucous membranes or an open wound, the risk for infection is reduced if the area is immediately washed with soap and water. Maintaining the health of the animal by regular inspection for fleas and ticks, scheduling deworming medications along with veterinary exams will also reduce the risk of acquiring a feline zoonosis.
Recommendations for the prevention of ringworm transmission to people include:
- regularly vacuuming areas of the home that pets commonly visit helps to remove fur or flakes of skin
- washing the hands with soap and running water after playing with or petting your pet.
- wearing gloves and long sleeves when handling cats infected with.
- disinfect areas the pet has spent time in, including surfaces and bedding.
- the spores of this fungus can be killed with common disinfectants like chlorine bleach diluted 1:10 (1/4 cup in 1 gallon of water), benzalkonium chloride, or strong detergents.
- not handling cats with ringworm by those whose immune system is weak in any way (if you have HIV/AIDS, are undergoing cancer treatment, or are taking medications that suppress the immune system, for example).
- taking the cat to the veterinarian if ringworm infection is suspected.
Preventative measures require effective personal and community hygiene. Some specific safeguards include the following:
- Purification of drinking water.
- Proper handling of food.
- Careful disposal of human feces.
- Monitoring the contacts of balantidiasis patients.
Feline zoonosis are the viral, bacterial, fungal, protozoan, nematode and arthropod infections that can be transmitted to humans from the domesticated cat, "Felis catus". Some of these are diseases are reemerging and newly emerging infections or infestations caused by zoonotic pathogens transmitted by cats. In some instances, the cat can display symptoms of infection (these may differ from the symptoms in humans) and sometimes the cat remains asymptomatic. There can be serious illnesses and clinical manifestations in people who become infected. This is dependent on the immune status and age of the person. Those who live in close association with cats are more prone to these infections. But those that do not keep cats as pets are also able to acquire these infections because of the transmission can be from cat feces and the parasites that leave their bodies.
People can acquire cat-associated infections through bites, scratches or other direct contact of the skin or mucous membranes with the cat. This includes 'kissing' or letting the animal lick the mouth or nose. Mucous membranes are easily infected when the pathogen is in the mouth of the cat. Pathogens can also infect people when there is contact with animal saliva, urine and other body fluids or secretions, When fecal material is unintentionally ingested, infection can occur. Feline zooinosis can be acquired by a person by inhalation of aerosols or droplets coughed up by the cat.
In the United States, forty percent of homes have at least one cat. Some contagious infections such as campylobacteriosis and salmonellosis cause visible symptoms of the disease in cats. Other infections, such as cat scratch disease and toxoplasmosis, have no visible symptoms and are carried by apparently healthy cats.