Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A range of medications that act on the central nervous system has been found to be useful in managing neuropathic pain. Commonly used treatments include tricyclic antidepressants (such as nortriptyline or amitriptyline), the serotonin-norepinephrine reuptake inhibitor (SNRI) medication duloxetine, and antiepileptic therapies such as gabapentin, pregabalin, or sodium valproate. Few studies have examined whether nonsteroidal anti-inflammatory drugs are effective in treating peripheral neuropathy.
Symptomatic relief for the pain of peripheral neuropathy may be obtained by application of topical capsaicin. Capsaicin is the factor that causes heat in chili peppers. The evidence suggesting that capsaicin applied to the skin reduces pain for peripheral neuropathy is of moderate to low quality and should be interpreted carefully before using this treatment option. Local anesthesia often is used to counteract the initial discomfort of the capsaicin. Some current research in animal models has shown that depleting neurotrophin-3 may oppose the demyelination present in some peripheral neuropathies by increasing myelin formation.
High-quality evidence supports the use of cannabis for neuropathic pain.
The treatment of peripheral neuropathy varies based on the cause of the condition, and treating the underlying condition can aid in the management of neuropathy. When peripheral neuropathy results from diabetes mellitus or prediabetes, blood sugar management is key to treatment. In prediabetes in particular, strict blood sugar control can significantly alter the course of neuropathy. In peripheral neuropathy that stems from immune-mediated diseases, the underlying condition is treated with intravenous immunoglobulin or steroids. When peripheral neuropathy results from vitamin deficiencies or other disorders, those are treated as well.
Typical opioid medications, such as oxycodone, appear to be no more effective than placebo. In contrast, low-quality evidence supports a moderate benefit from the use of atypical opioids (e.g., tramadol and tapentadol), which also have SNRI properties. Opioid medications are recommended as second or third-line treatment for DPN.
TCAs include imipramine, amitriptyline, desipramine, and nortriptyline. They are generally regarded as first or second-line treatment for DPN. Of the TCAs, imipramine has been the best studied. These medications are effective at decreasing painful symptoms but suffer from multiple side effects that are dose-dependent. One notable side effect is cardiac toxicity, which can lead to fatal abnormal heart rhythms. Additional common side effects include dry mouth, difficulty sleeping, and sedation. At low dosages used for neuropathy, toxicity is rare, but if symptoms warrant higher doses, complications are more common. Among the TCAs, amitriptyline is most widely used for this condition, but desipramine and nortriptyline have fewer side effects.
In the treatment of polyneuropathies one must ascertain and manage the cause, among management activities are: weight decrease, use of a walking aid, and occupational therapist assistance. Additionally BP control in those with diabetes is helpful, while intravenous immunoglobulin is used for multifocal motor neuropathy.
According to Lopate, et al., methylprednisolone is a viable treatment for chronic inflammatory demyelinative polyneuropathy (which can also be treated with intravenous immunoglobulin) The author(s) also indicate that prednisone has greater adverse effects in such treatment, as opposed to intermittent (high-doses) of the aforementioned medication.
According to Wu, et al., in critical illness polyneuropathy supportive and preventive therapy are important for the affected individual, as well as, avoiding (or limiting) corticosteroids.
Treatment is based on the underlying cause, if any. Where the likely underlying condition is known, treatment of this condition is indicated treated to reduce progression of the disease and symptoms. For cases without those conditions, there is only symptomatic treatment.
Proper management of diabetes mellitus can prevent proximal diabetic neuropathy from ever occurring.
The incidence of proximal diabetic neuropathy incidence is thought to be correlated to blood glucose control in diabetics, and is likely reversible with better control.
Medication helps reduce the pain involved in proximal diabetic neuropathy. Most patients take oral medication that is prescribed by a doctor. Common types of medication used to treat diabetic amyotrophy include anticonvulsives (e.g. gabapentin, pregabalin) as well as opioid medications, although the latter category is not optimally indicated for neuropathic pain.
There is no current treatment, however management of hereditary neuropathy with liability to pressure palsy can be done via:
- Occupational therapist
- Ankle/foot orthosis
- Wrist splint (medicine)
- Avoid repetitive movements
Physical therapy is the predominant treatment of symptoms. Orthopedic shoes and foot surgery can be used to manage foot problems.
First-line treatment for CIDP is currently intravenous immunoglobulin (IVIG) and other treatments include corticosteroids (e.g. prednisone), and plasmapheresis (plasma exchange) which may be prescribed alone or in combination with an immunosuppressant drug. Recent controlled studies show subcutaneous immunoglobin (SCIG) appears to be as effective for CIDP treatment as IVIG in most patients, and with fewer systemic side effects.
IVIG and plasmapheresis have proven benefit in randomized, double-blind, placebo-controlled trials. Despite less definitive published evidence of efficacy, corticosteroids are considered standard therapies because of their long history of use and cost effectiveness. IVIG is probably the first-line CIDP treatment, but is extremely expensive. For example, in the U.S., a single 65 g dose of Gamunex brand in 2010 might be billed at the rate of $8,000 just for the immunoglobulin—not including other charges such as nurse administration. Gamunex brand IVIG is the only U.S. FDA approved treatment for CIDP, as in 2008 Talecris, the maker of Gamunex, received orphan drug status for this drug for the treatment of CIDP.
Immunosuppressive drugs are often of the cytotoxic (chemotherapy) class, including rituximab (Rituxan) which targets B cells, and cyclophosphamide, a drug which reduces the function of the immune system. Ciclosporin has also been used in CIDP but with less frequency as it is a newer approach. Ciclosporin is thought to bind to immunocompetent lymphocytes, especially T-lymphocytes.
Non-cytotoxic immunosuppressive treatments usually include the anti-rejection transplant drugs azathioprine (Imuran/Azoran) and mycophenolate mofetil (Cellcept). In the U.S., these drugs are used as "off-label" treatments for CIDP, meaning that their use here is accepted by the FDA, but that CIDP treatment is not explicitly indicated or approved in the drug literature. Before azathioprine is used, the patient should first have a blood test that ensures that azathioprine can safely be used.
Anti-thymocyte globulin (ATG), an immunosuppressive agent that selectively destroys T lymphocytes is being studied for use in CIDP. Anti-thymocyte globulin is the gamma globulin fraction of antiserum from animals that have been immunized against human thymocytes. It is a polyclonal antibody.
Although chemotherapeutic and immunosuppressive agents have shown to be effective in treating CIDP, significant evidence is lacking, mostly due to the heterogeneous nature of the disease in the patient population in addition to the lack of controlled trials.
A review of several treatments found that azathioprine, interferon alpha and methotrexate were not effective. Cyclophosphamide and rituximab seem to have some response. Mycophenolate mofetil may be of use in milder cases. Immunoglobulin and steroids are the first line choices for treatment. Rarely bone marrow transplantation has been performed.
Physical therapy and occupational therapy may improve muscle strength, activities of daily living, mobility, and minimize the shrinkage of muscles and tendons and distortions of the joints.
There is currently no known pharmacological treatment to hereditary motor and sensory neuropathies. However, the majority of people with these diseases are able to walk and be self-sufficient. Some methods of relief for the disease include physical therapy, stretching, braces, and sometimes orthopedic surgery. Since foot disorders are common with neuropathy disorders precautions must be taken to strengthen these muscles and use preventative care and physical therapy to prevent injury and deformities.
When an underlying medical condition is causing the neuropathy, treatment should first be directed at this condition. For example, if weight gain is the underlying cause, then a weight loss program is the most appropriate treatment. Compression neuropathy occurring in pregnancy often resolves after delivery, so no specific treatment is usually required. Some compression neuropathies are amenable to surgery: carpal tunnel syndrome and cubital tunnel syndrome are two common examples. Whether or not it is appropriate to offer surgery in any particular case depends on the severity of the symptoms, the risks of the proposed operation, and the prognosis if untreated. After surgery, the symptoms may resolve completely, but if the compression was sufficiently severe or prolonged then the nerve may not recover fully and some symptoms may persist. Drug treatment may be useful for an underlying condition (including peripheral oedema), or for ameliorating neuropathic pain.
Treatment is dependent upon diagnosis and the stage at which the diagnosis is secured. For toxic and nutritional optic neuropathies, the most important course is to remove the offending agent if possible and to replace the missing nutritional elements, orally, intramuscularly, or intravenously. If treatment is delayed, the injury may be irreversible. The course of treatment varies with the congenital forms of these neuropathies. There are some drug treatments that have shown modest success, such as Idebenone used to treat LOHN. Often treatment is relegated to lifestyle alterations and accommodations and supportive measures.
Liver transplantation has proven to be effective for ATTR familial amyloidosis due to Val30Met mutation.
Alternatively, a European Medicines Agency approved drug Tafamidis or Vyndaqel now exists which stabilizes transthyretin tetramers comprising wild type and different mutant subunits against amyloidogenesis halting the progression of peripheral neuropathy and autonomic nervous system dysfunction.
Currently there are two ongoing clinical trials undergoing recruitment in the United States and worldwide to evaluate investigational medicines that could possibly treat TTR.
The anticonvulsant valproate, an effective treatment for diabetic neuropathy, appeared to offer some protection against cisplatin-induced neuropathy in rats.
In a study of patients receiving oxaliplatin treatment, only 4 percent of those also receiving intravenous calcium and magnesium (ca/mg) before and after each oxaliplatin dose had to discontinue treatment due to neurotoxicity, compared to 33 percent who were receiving intravenous placebo; onset of neuropathy was also significantly delayed in the ca/mg patients, and only 22 percent of the ca/mg patients had long-term CIPN of grade 2 or worse compared with 41 percent of those on placebo. Overall, trials of ca/mg infusion suggest there are no serious harmful side effects and it may be an effective preventative therapy — the number of patients so far studied is small, however, and confident conclusions cannot be drawn.
There is no pharmacological treatment for Roussy–Lévy syndrome.
Treatment options focus on palliative care and corrective therapy. Patients tend to benefit greatly from physical therapy (especially water therapy as it does not place excessive pressure on the muscles), while moderate activity is often recommended to maintain movement, flexibility, muscle strength and endurance.
Patients with foot deformities may benefit from corrective surgery, which, however, is usually a last resort. Most such surgeries include straightening and pinning the toes, lowering the arch, and sometimes, fusing the ankle joint to provide stability. Recovering from these surgeries is oftentimes long and difficult. Proper foot care including custom-made shoes and leg braces may minimize discomfort and increase function.
While no medicines are reported to treat the disorder, patients are advised to avoid certain medications as they may aggravate the symptoms.
Currently there is no effective therapy for dominant optic atrophy, and consequently, these patients are simply monitored for changes in vision by their eye-care professional. Children of patients should be screened regularly for visual changes related to dominant optic atrophy. Research is underway to further characterize the disease so that therapies may be developed.
No specific treatment is known that would prevent, slow, or reverse HSP. Available therapies mainly consist of symptomatic medical management and promoting physical and emotional well-being. Therapeutics offered to HSP patients include:
- Baclofen – a voluntary muscle relaxant to relax muscles and reduce tone. This can be administered orally or intrathecally. (Studies in HSP )
- Tizanidine – to treat nocturnal or intermittent spasms (studies available )
- Diazepam and clonazepam – to decrease intensity of spasms
- Oxybutynin chloride – an involuntary muscle relaxant and spasmolytic agent, used to reduce spasticity of the bladder in patients with bladder control problems
- Tolterodine tartate – an involuntary muscle relaxant and spasmolytic agent, used to reduce spasticity of the bladder in patients with bladder control problems
- Botulinum toxin – to reduce muscle overactivity (existing studies for HSP patients)
- Antidepressants (such as selective serotonin re-uptake inhibitors, tricyclic antidepressants and monoamine oxidase inhibitors) – for patients experiencing clinical depression
- Physical therapy – to restore and maintain the ability to move; to reduce muscle tone; to maintain or improve range of motion and mobility; to increase strength and coordination; to prevent complications, such as frozen joints, contractures, or bedsores.
Gene-based therapies for patients with HSAN I are not available to date, hence supportive care is the only treatment available for the patients. Ulcero-mutilating complications are the most serious, prominent, and leading diagnostic features in HSAN I. Since the complications mimic foot ulcers caused by diabetic neuropathy, the treatment for foot ulcers and infections can follow the guidelines given for diabetic foot care which starts with early and accurate counseling of patients about risk factors for developing foot ulcerations. Orthopedic care and the use of well fitting shoes without pressure points should also be included. Recently, the treatment of the foot complications has reached an efficient level allowing treatment on an outpatient basis. Early treatment of the foot complications often avoids hospitalization and, in particular, amputations. In sum, the principles of the treatment are removal of pressure to the ulcers, eradication of infection, and specific protective footwear afterwards.
Therapy for notalgia paresthetica is directed at controlling symptoms, as no cure exists for the condition. Available treatments include local anesthetics, topical capsaicin, topical corticosteroids, hydroxyzine, oxcarbazepine, palmitoylethanolamide and gabapentin. Paravertebral nerve block and botulinum toxin injections may also be helpful.
Some patients treated with low concentration topical capsaicin reported pain, burning, or tingling sensations with treatment, and symptoms returned within a month of ceasing treatment. Oxcarbazepine was reported to reduce the severity of symptoms in a few cases. One patient has been treated with "paravertebral nerve blocks, with bupivacaine and methylprednisolone acetate injected into the T3–T4 and T5–T6 intervertebral spaces" Hydroxyzine has also been used with considerable success in some cases as long as the pills are used daily.
High concentration topical capsaicin (8%, Qutenza) have been shown to be highly effective in treating neuropathic itch in some patients (including notalgia paresthetica) as well as in a recent proof-of-concept study, but this remains to be confirmed in randomised controlled trials.
Most recently intradermal injections of botulinum toxin type A (Botox) have been tried with some success. Even though botulinum normally wears off in three to six months, the treatment appears to be long term, and it has been theorised that botulinum type A effects lasting change in pain signaling. Unfortunately, repeated injections have been associated with diminished movement ability of the upper back and arms and its recommendation as a treatment has therefore become less popular.
Chlorambucil is a chemotherapy drug normally used to treat leukemia as it is often used as an immunosuppressant drug, and prednisone is a steroid that has also been found to be particularly effective as an immunosuppressant. This combination of drugs has minimal to no benefits in most patients, but a small number do see small improvements such as decreased tremors. This combination has not been very effective in more severe cases, though, and is not considered a long term therapy.
Cyclophosphamide is a drug often used in the treatment of lymphomas and works by slowing or stopping cell growth. It also works as an immunosuppressant by decreasing the body’s immune response to various diseases and conditions. This drug has been found to make significant improvements in people with anti-MAG neuropathy by relieving sensory loss and helping to improve quality of life in a few short months. There is, however, a risk of cancer because of this treatment and is therefore not used on a regular basis.
If patients with HSAN I receive appropriate treatment and counseling, the prognosis is good. Early treatment of foot infections may avoid serious complications. Nevertheless, the complications are manageable, thus allowing an acceptable quality of life. The disease progresses slowly and does not influence the life expectancy if signs and symptoms are properly treated.
Treatment typically involves improving the patient's quality of life. This is accomplished through the management of symptoms or slowing the rate of demyelination. Treatment can include medication, lifestyle changes (i.e. quit smoking, adjusting daily schedules to include rest periods and dietary changes), counselling, relaxation, physical exercise, patient education and, in some cases, deep brain thalamic stimulation (in the case of tremors). The progressive phase of MS appears driven by the innate immune system, which will directly contribute to the neurodegenerative changes that occur in progressive MS. Until now, there are no therapies that specifically target innate immune cells in MS. As the role of innate immunity in MS becomes better defined, it may be possible to better treat MS by targeting the innate immune system.
Treatments are patient-specific and depend on the symptoms that present with the disorder, as well as the progression of the condition.