Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In terms of the management of ring chromosome 14 syndrome, anticonvulsive medication for seizures, as well as, proper therapy to help prevent respiratory infections in the affected individual are management "measures" that can be taken.
Treatment of Roberts syndrome is individualized and specifically aimed at improving the quality of life for those afflicted with the disorder. Some of the possible treatments include: surgery for the cleft lip and palate, correction of limb abnormalities (also through surgery), and improvement in prehensile hand grasp development.
If a contracture is less than 30 degrees, it may not interfere with normal functioning. The common treatment is splinting and occupational therapy. Surgery is the last option for most cases as the result may not be satisfactory.
Many professionals that are likely to be involved in the treatment of those with Stickler's syndrome, include anesthesiologists, oral and maxillofacial surgeons; craniofacial surgeons; ear, nose, and throat specialists, ophthalmologists, optometrists, audiologists, speech pathologists, physical therapists and rheumatologists.
Normal treatment for swelling and any respiratory problems is appropriate. Nutritional supplementation with Vitamin E in some studies has been shown to be effective in controlling nail changes.
In rare cases, if diagnosed in utero, fetal surgery may be considered to save a limb which is in danger of amputation or other deformity. This typically would not be attempted if neither vital organs nor the umbilical cord were affected. This operation has been successfully performed on fetuses as young as 22 weeks. The surgery took place at Melbourne's Monash Medical Centre in Australia and is believed to be the earliest surgery of its type, as surgeons usually hold off on operating until the woman is in week 28 of gestation. There are also several facilities in the United States that have performed successful amniotic band release surgery.
Treatment usually occurs after birth and where plastic and reconstructive surgery is considered to treat the resulting deformity. Plastic surgery ranges from simple to complex depending on the extent of the deformity. Physical and occupational therapy may be needed long term.
Prosthetics may help some ABS sufferers to live more functional lives. The price and complexity of these prosthetics vary dramatically, but advances in 3-D printing have helped to increase the availability of artificial fingers while reducing their cost of production.
As a chromosomal condition, there is no cure for Turner syndrome. However, much can be done to minimize the symptoms. For example:
- Growth hormone, either alone or with a low dose of androgen, will increase growth and probably final adult height. Growth hormone is approved by the U.S. Food and Drug Administration for treatment of Turner syndrome and is covered by many insurance plans. There is evidence that this is effective, even in toddlers.
- Estrogen replacement therapy such as the birth control pill, has been used since the condition was described in 1938 to promote development of secondary sexual characteristics. Estrogens are crucial for maintaining good bone integrity, cardiovascular health and tissue health. Women with Turner Syndrome who do not have spontaneous puberty and who are not treated with estrogen are at high risk for osteoporosis and heart conditions.
- Modern reproductive technologies have also been used to help women with Turner syndrome become pregnant if they desire. For example, a donor egg can be used to create an embryo, which is carried by the Turner syndrome woman.
- Uterine maturity is positively associated with years of estrogen use, history of spontaneous menarche, and negatively associated with the lack of current hormone replacement therapy.
Once the main cause of the disease is treated, a diet of low-fat and high-protein aliments, supplemental calcium and certain vitamins has been shown to reduce symptom effects. This diet, however, is not a cure. If the diet is stopped, the symptoms will eventually reappear.
Surgical correction is recommended when a constriction ring results in a limb contour deformity, with or without lymphedema.
At the beginning of the surgery a tourniquet will be applied to the limb. A tourniquet compresses and control the arterial and venous circulation for about 2 hours. The constriction band must be dissected very carefully to avoid damaging the underlying neurovasculature. When the constriction band is excised, there will be a direct closure. This allows the fatty tissue to naturally reposition itself under the skin.
“With complete circumferential constriction bands, it is recommended that a two-stage correction approach be used. At the first operation, one-half of the circumference is excised and the other one-half can be excised after three to six months. This will avoid any problems to the distal circulation in the limb, which may already be compromised. Lymphedema, when present, will significantly improve within a few weeks of the first surgery.”
For the direct closure of the defect after dissecting a constriction band there are two different techniques:
1. Triangular flaps; For this technique the circumference between the two borders must be measured. Depending on the difference the number of triangular flaps can be decided. With a triangular flap you can create more skin.
2. Z/W-plasty; “Z-plasty is a plastic surgery technique that is used to improve the functional and cosmetic appearance of scars. It can elongate a contracted scar or rotate the scar tension line. The middle line of the Z-shaped incision (the central element) is made along the line of greatest tension or contraction, and triangular flaps are raised on opposite sides of the two ends and then transposed.”
In rare cases, if diagnosed in utero, fetal surgery may be considered to save a limb that is in danger of amputation or other deformity. This operation has been successfully performed on fetuses as young as 22 weeks. The Melbourne's Monash Medical Centre in Australia, as well as multiple facilities in the United States of America, have performed successful amniotic band release surgery.
The outcome of this disease is dependent on the severity of the cardiac defects. Approximately 1 in 3 children with this diagnosis require shunting for the hydrocephaly that is often a consequence. Some children require extra assistance or therapy for delayed psychomotor and speech development, including hypotonia.
The treatment of choice is a large resection or amputation of the affected limb. Radiation therapy can precede or follow surgical treatment. Tumors that have advanced locally or have metastasized can be treated with mono or polychemotherapy, systemically or locally. However, chemotherapy and radiation therapy have not been shown to improve survivorship significantly.
The use of surgery to treat the condition is controversial. Options include liposuction and lipectomy.
The studies of highest quality involve tumescent or super tumescent anesthesia and vibrating liposuction, powered, cannula used with lymph sparing techniques. The treatment of lipedema with tumescent liposuction requires multiple procedures. In the United States Health Insurance do not generally pay for liposuction for lipedema, making it expensive. Liposuction under general anesthesia, without tumescent anesthesia, can be damaging and is not recommended for the treatment.
People with yellow nail syndrome have been found to have a moderately reduced lifespan compared to people without the condition.
Medical treatment is designed primarily to address the secondary lymphedema part of the lipedema patient's condition. This treatment includes a course of manual lymphatic drainage and bandaging by a lymphedema therapist, followed by the wearing of custom-fitted compression garments or devices — usually stockings, and sometimes biker shorts and/or arm compression. Compression prevents recurrence of lymphedema, and in some lipedema patients can reduce the pain of lipedematous fat.
There is currently no known uniform medical procedure to cure lipedema. It is, however, successfully managed through a variety of consistently applied techniques to improve the health of the legs and prevent the condition from returning in more difficult to manage levels. Management involves reducing dietary sodium intake, frequent, gentle exercise to promote circulation in the legs, such as rebound exercise, and treatments typical for lymphedema treatment.
Amniotic band syndrome is considered an accidental event and it does not appear to be genetic or hereditary, so the likelihood of it occurring in another pregnancy is remote. The cause of amnion tearing is unknown and as such there are no known preventative measures.
There is no cure for CPL; the aim of treatment is to relieve the signs of the disease, and to slow the progression. Management requires daily care to prevent infection of the affected skin. The first step is to trim the feather from the lower leg, to ensure no affected areas are missed, and to allow application of treatments directly to the affected skin. Bacterial infections can be treated by gentle washing and drying of the skin. Topical treatments are required to treat chorioptic mange (caused by the mite "Chorioptes equi"), as the mites are not vulnerable to oral or systemic treatments when they are within the crusts on the skin. Daily exercise assists with the flow of lymph. Combined decongestive therapy involves massage of the leg to move the lymph, followed by specialized compression bandaging which creates a pressure gradient up the leg.
Horses with CPL often have poor-quality hoof, so regular trimming is required to help keep the hoof healthy.
After the first discovery and description of Marshall–Smith syndrome in 1971, research to this rare syndrome has been carried out.
- Adam, M., Hennekam, R.C.M., Butler, M.G., Raf, M., Keppen, L., Bull, M., Clericuzio, C., Burke, L., Guttacher, A., Ormond, K., & Hoyme, H.E. (2002). Marshall–Smith syndrome: An osteochondrodysplasia with connective tissue abnormalities. 23rd Annual David W. Smith Workshop on Malformations and Morphogenesis, August 7, Clemson, SC.
- Adam MP, Hennekam RC, Keppen LD, Bull MJ, Clericuzio CL, Burke LW, Guttmacher AE, Ormond KE and Hoyme HE: Marshall-Smith Syndrome: Natural history and evidence of an osteochondrodysplasia with connective tissue abnormalities. American Journal of Medical Genetics 137A:117–124, 2005.
- Baldellou Vazquez A, Ruiz-Echarri Zelaya MP, Loris Pablo C, Ferr#{225}ndez Longas A, Tamparillas Salvador M. El sIndrome de Marshall-Smith: a prop#{243}sito de una observad#{243}n personal. An Esp Pediatr 1983; 18:45-50.
- Butler, M.G. (2003). Marshall–Smith syndrome. In: The NORD Guide to Rare Disorders. (pp219–220) Lippincott, Williams & Wilkins, Philadelphia, PA.
- Charon A, Gillerot T, Van Maldergem L, Van Schaftingen MH, de Bont B, Koulischer L. The Marshall–Smith syndrome. Eur J Pediatr 1990; 150: 54-5.
- Dernedde, G., Pendeville, P., Veyckemans, F., Verellen, G. & Gillerot, Y. (1998). Anaesthetic management of a child with Marshall–Smith syndrome. Canadian Journal of Anesthesia. 45 (7): 660. Anaesthetic management of a child with Marshall-Smith syndrome
- Diab, M., Raff, M., Gunther, D.F. (2002). Osseous fragility in Marshall–Smith syndrome. Clinical Report: Osseous fragility in Marshall-Smith syndrome
- Ehresmann, T., Gillessen-Kaesbach G., Koenig R. (2005). Late diagnosis of Marshall Smith Syndrome (MSS). In: Medgen 17.
- Hassan M, Sutton T, Mage K, LimalJM, Rappaport R. The syndrome of accelerated bone maturation in the newborn infant with dysmorphism and congenital malformations: (the so-called Marshall–Smith syndrome). Pediatr Radiol 1976; 5:53-57.
- Hoyme HE and Bull MJ: The Marshall-Smith Syndrome: Natural history beyond infancy. Western Society for Pediatric Research, Carmel, California, February, 1987. Clin Res 35:68A, 1987.
- Hoyme HE and Bull MJ: The Marshall-Smith Syndrome: Natural history beyond infancy. David W. Smith Morphogenesis and Malformations Workshop. Greenville, SC, August, 1987. Proceedings of the Greenwood Genetics Center 7:152, 1988.
- Hoyme HE, Byers PH, Guttmacher AE: Marshall–Smith syndrome: Further evidence of an osteochondrodysplasia in long-term survivors. David W. Smith Morphogenesis and Malformations Workshop, Winston-Salem, NC, August, 1992. Proceedings of the Greenwood Genetic Center 12:70, 1993.
- .
- Tzu-Jou Wang (2002). Marshall–Smith syndrome in a Taiwanese patient with T-cell immunodeficiency. Am J Med Genet Part A;112 (1):107-108.
Lymphedema–distichiasis syndrome is a medical condition associated with the FOXC2 gene.
The Aagenæs syndrome or Aagenaes syndrome is a syndrome characterised by congenital hypoplasia of lymph vessels, which causes lymphedema of the legs and recurrent cholestasis in infancy, and slow progress to hepatic cirrhosis and giant cell hepatitis with fibrosis of the portal tracts.
The genetic cause is unknown, but it is autosomal recessively inherited and the gene is located to chromosome 15q. A common feature of the condition is a generalised lymphatic anomaly, which may be indicative of the defect being lymphangiogenetic in origin. The condition is particularly frequent in southern Norway, where more than half the cases are reported from, but is found in patients in other parts of Europe and the United States. It is named after Øystein Aagenæs, a Norwegian paediatrician.
It is also called cholestasis-lymphedema syndrome (CLS).
Prognoses for 3C syndrome vary widely based on the specific constellation of symptoms seen in an individual. Typically, the gravity of the prognosis correlates with the severity of the cardiac abnormalities. For children with less severe cardiac abnormalities, the developmental prognosis depends on the cerebellar abnormalities that are present. Severe cerebellar hypoplasia is associated with growth and speech delays, as well as hypotonia and general growth deficiencies.
Hennekam syndrome also known as intestinal lymphagiectasia–lymphedema–mental retardation syndrome, is an autosomal recessive disorder consisting of intestinal lymphangiectasia, facial anomalies, peripheral lymphedema, and mild to moderate levels of growth and intellectual disability.
It is also known as "lymphedema-lymphangiectasia-mental retardation syndrome".
In a subset of patients it is associated with CCBE1 according research published by its namesake, Raoul Hennekam. Other causal mutations were found in the FAT4 gene. Previously, mutations in the FAT4 gene had been only associated with van Maldergem syndrome. The molecular mechanism of the lymphedema phenotype in CCBE1-associated cases was identified as a diminished ability of the mutated CCBE1 to accelerate and focus the activation of the primary lymphangiogenic growth factor VEGF-C.
Marshall–Smith syndrome is not to be confused with:
- Marshall syndrome (aka.Periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA syndrome, see also: Periodic fever syndrome)
- Sotos (like) syndrome
- Weaver-Smith syndrome (WSS)
Treatment is multifactorial. A diet very low in fat and high in high quality protein is essential. Treatment of humans can also involve the use of MCT (medium-chain triglycerides) oil and/or the drug octreotide. In dogs, fat soluble vitamins (A, D, E, and K) should be supplemented. Corticosteroid treatment may be required for life. Antibiotics can be used to treat bacterial overgrowth. With a very low serum albumin, transfusion with blood plasma or an infusion of hetastarch may be necessary to treat the signs until the diet can take effect. Lymphangiectasia is rarely cured but can remain in remission for a long time. It can be fatal when unresponsive to treatment.
Milroy's disease (MD) is a familial disease characterized by lymphedema, commonly in the legs, caused by congenital abnormalities in the lymphatic system. Disruption of the normal drainage of lymph leads to fluid accumulation and hypertrophy of soft tissues. It is also known as Milroy disease, Nonne-Milroy-Meige syndrome and hereditary lymphedema.
It was named by Sir William Osler for William Milroy, a Canadian physician, who described a case in 1892, though it was first described by Rudolf Virchow in 1863.