Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The only effective treatment is prompt delivery of the baby. Several medications have been investigated for the treatment of HELLP syndrome, but evidence is conflicting as to whether magnesium sulfate decreases the risk of seizures and progress to eclampsia. The disseminated intravascular coagulation is treated with fresh frozen plasma to replenish the coagulation proteins, and the anemia may require blood transfusion. In mild cases, corticosteroids and antihypertensives (labetalol, hydralazine, nifedipine) may be sufficient. Intravenous fluids are generally required. Hepatic hemorrhage can be treated with embolization, as well, if life-threatening bleeding ensues.
The University of Mississippi standard protocol for HELLP includes corticosteroids. However, a 2009 review found "no conclusive evidence" supporting corticosteroid therapy, and a 2010 systematic review by the Cochrane Collaboration also found "no clear evidence of any effect of corticosteroids on substantive clinical outcomes" either for the mothers or for the newborns,
Treatment depends on the amount of blood loss and the status of the fetus. If the fetus is less than 36 weeks and neither mother or fetus is in any distress, then they may simply be monitored in hospital until a change in condition or fetal maturity whichever comes first.
Immediate delivery of the fetus may be indicated if the fetus is mature or if the fetus or mother is in distress. Blood volume replacement to maintain blood pressure and blood plasma replacement to maintain fibrinogen levels may be needed. Vaginal birth is usually preferred over Caesarean section unless there is fetal distress. Caesarean section is contraindicated in cases of disseminated intravascular coagulation. People should be monitored for 7 days for postpartum hemorrhage. Excessive bleeding from uterus may necessitate hysterectomy. The mother may be given Rhogam if she is Rh negative.
Cordocentesis can be performed in utero to determine the platelet count of the fetus. This procedure is only performed if a "prior" pregnancy was affected by . Intrauterine transfusions can be performed during cordocentesis for primary prevention of intracerebral hemorrhage. Any administered cellular blood products must be irradiated to reduce the risk of graft-versus-host disease in the fetus. Additionally, all administered blood products should be reduced-risk ( seronegative and leukoreduced are considered essentially equivalent for the purposes of risk reduction).
If intrauterine platelet transfusions are performed, they are generally repeated weekly (platelet lifespan after transfusion is approximately 8 to 10 days). Platelets administered to the fetus must be negative for the culprit antigen (often -1a, as stated above). Many blood suppliers (such as American Red Cross and United Blood Services) have identified -1a negative donors. An alternative donor is the mother who is, of course, negative for the culprit antigen. However, she must meet general criteria for donation and platelets received from the mother must be washed to remove the offending alloantibody and irradiated to reduce the risk of graft-versus-host disease. If platlet transfusions are needed urgently, incompatible platelets may be used, with the understanding that they may be less effective and that the administration of any blood product carries risk.
The use of Intravenous immunoglobulin () during pregnancy and immediately after birth has been shown to help reduce or alleviate the effects of in infants and reduce the severity of thrombocytopenia. The most common treatment is weekly infusions at a dosage of 1 g/kg beginning at 16 to 28 weeks of pregnancy, depending on the severity of the disease in the previous affected child, and continuing until the birth of the child. In some cases this dosage is increased to 2 g/kg and/or combined with a course of prednisone depending on the exact circumstances of the case. Although this treatment has not been shown to be effective in all cases it has been shown to reduce the severity of thrombocytopenia in some. Also, it is suspected that (though not understood why) provides some added protection from intercranial haemorrhage () to the fetus. Even with treatment, the fetal platelet count may need to be monitored and platelet transfusions may still be required.
The goal of both and platelet transfusion is to avoid hemorrhage. Ultrasound monitoring to detect hemorrhage is not recommended as detection of intracranial hemorrhage generally indicates permanent brain damage (there is no intervention that can be performed to reverse the damage once it has occurred).
Before delivery, the fetal platelet count should be determined. A count of >50,000 μL is recommended for vaginal delivery and the count should be kept above 20,000 μL after birth.
The method of delivery is determined by clinical state of the mother, fetus and ultrasound findings. In minor degrees (traditional grade I and II), vaginal delivery is possible. RCOG recommends that the placenta should be at least 2 cm away from internal os for an attempted vaginal delivery. When a vaginal delivery is attempted, consultant obstetrician and anesthetists are present in delivery suite. In cases of fetal distress and major degrees (traditional grade III and IV) a caesarean section is indicated. Caesarian section is contraindicated in cases of disseminated intravascular coagulation. An obstetrician may need to divide the anterior lying placenta. In such cases, blood loss is expected to be high and thus blood and blood products are always kept ready. In rare cases, hysterectomy may be required.
Although the risk of placental abruption cannot be eliminated, it can be reduced. Avoiding tobacco, alcohol and cocaine during pregnancy decreases the risk. Staying away from activities which have a high risk of physical trauma is also important. Women who have high blood pressure or who have had a previous placental abruption and want to conceive must be closely supervised by a doctor.
The risk of placental abruption can be reduced by maintaining a good diet including taking folic acid, regular sleep patterns and correction of pregnancy-induced hypertension.
It is crucial for women to be made aware of the signs of placental abruption, such as vaginal bleeding, and that if they experience such symptoms they must get into contact with their health care provider/the hospital "without any delay".
Drugs used during pregnancy can have temporary or permanent effects on the fetus. Anything (including drugs) that can cause permanent deformities in the fetus are labeled as teratogens. In the U.S., drugs were classified into categories A, B, C, D and X based on the Food and Drug Administration (FDA) rating system to provide therapeutic guidance based on potential benefits and fetal risks. Drugs, including some multivitamins, that have demonstrated no fetal risks after controlled studies in humans are classified as Category A. On the other hand, drugs like thalidomide with proven fetal risks that outweigh all benefits are classified as Category X.
An initial assessment to determine the status of the mother and fetus is required. Although mothers used to be treated in the hospital from the first bleeding episode until birth, it is now considered safe to treat placenta previa on an outpatient basis if the fetus is at less than 30 weeks of gestation, and neither the mother nor the fetus are in distress. Immediate delivery of the fetus may be indicated if the fetus is mature or if the fetus or mother are in distress. Blood volume replacement (to maintain blood pressure) and blood plasma replacement (to maintain fibrinogen levels) may be necessary.
Corticosteroids are indicated at 24–34 weeks gestation, given the higher risk of premature birth.
No treatment is necessary for a diagnosis of complete miscarriage (so long as ectopic pregnancy is ruled out). In cases of an incomplete miscarriage, empty sac, or missed abortion there are three treatment options: watchful waiting, medical management, and surgical treatment. With no treatment (watchful waiting), most miscarriages (65–80%) will pass naturally within two to six weeks. This treatment avoids the possible side effects and complications of medications and surgery, but increases the risk of mild bleeding, need for unplanned surgical treatment, and incomplete miscarriage. Medical treatment usually consists of using misoprostol (a prostaglandin) to contract the uterus, expelling remaining tissue out of the cervix. This works within a few days in 95% of cases. Vacuum aspiration or sharp curettage can be used, though vacuum aspiration is lower-risk and more common.
In delayed or incomplete miscarriage, treatment depends on the amount of tissue remaining in the uterus. Treatment can include surgical removal of the tissue with vacuum aspiration or misoprostol. Some organizations recommend delaying sexual relations immediately after a miscarriage to prevent infection.
Early treatment of an ectopic pregnancy with methotrexate is a viable alternative to surgical treatment which was developed in the 1980s. If administered early in the pregnancy, methotrexate terminates the growth of the developing embryo; this may cause an abortion, or the developing embryo may then be either resorbed by the woman's body or pass with a menstrual period. Contraindications include liver, kidney, or blood disease, as well as an ectopic embryonic mass > 3.5 cm.
Also, it may lead to the inadvertent termination of an undetected intrauterine pregnancy, or severe abnormality in any surviving pregnancy. Therefore, it is recommended that methotrexate should only be administered when hCG has been serially monitored with a rise less than 35% over 48 hours, which practically excludes a viable intrauterine pregnancy.
Nutrition during pregnancy is important to ensure healthy growth of the fetus. Nutrition during pregnancy is different from the non-pregnant state. There are increased energy requirements and specific micronutrient requirements. Women benefit from education to encourage a balanced energy and protein intake during pregnancy. Some women may need professional medical advice if their diet is affected by medical conditions, food allergies, or specific religious/ ethical beliefs.
Adequate periconceptional (time before and right after conception) folic acid (also called folate or Vitamin B) intake has been shown to decrease the risk of fetal neural tube defects, such as spina bifida. The neural tube develops during the first 28 days of pregnancy, a urine pregnancy test is not usually positive until 14 days post-conception, explaining the necessity to guarantee adequate folate intake before conception. Folate is abundant in green leafy vegetables, legumes, and citrus. In the United States and Canada, most wheat products (flour, noodles) are fortified with folic acid.
DHA omega-3 is a major structural fatty acid in the brain and retina, and is naturally found in breast milk. It is important for the woman to consume adequate amounts of DHA during pregnancy and while nursing to support her well-being and the health of her infant. Developing infants cannot produce DHA efficiently, and must receive this vital nutrient from the woman through the placenta during pregnancy and in breast milk after birth.
Several micronutrients are important for the health of the developing fetus, especially in areas of the world where insufficient nutrition is common. Women living in low and middle income countries are suggested to take multiple micronutrient supplements containing iron and folic acid. These supplements have been shown to improve birth outcomes in developing countries, but do not have an effect on perinatal mortality. Adequate intake of folic acid, and iron is often recommended. In developed areas, such as Western Europe and the United States, certain nutrients such as Vitamin D and calcium, required for bone development, may also require supplementation. Vitamin E supplementation has not been shown to improve birth outcomes. Zinc supplementation has been associated with a decrease in preterm birth, but it is unclear whether it is causative. Daily iron supplementation reduces the risk of maternal anemia. Studies of routine daily iron supplementation for pregnant women found improvement in blood iron levels, without a clear clinical benefit. The nutritional needs for women carrying twins or triplets. are higher than those of women carrying one baby.
Women are counseled to avoid certain foods, because of the possibility of contamination with bacteria or parasites that can cause illness. Careful washing of fruits and raw vegetables may remove these pathogens, as may thoroughly cooking leftovers, meat, or processed meat. Unpasteurized dairy and deli meats may contain "Listeria," which can cause neonatal meningitis, stillbirth and miscarriage. Pregnant women are also more prone to "Salmonella" infections, can be in eggs and poultry, which should be thoroughly cooked. Cat feces and undercooked meats may contain the parasite Toxoplasma gondii and can cause toxoplasmosis. Practicing good hygiene in the kitchen can reduce these risks.
Women are also counseled to eat seafood in moderation and to eliminate seafood known to be high in mercury because of the risk of birth defects. Pregnant women are counseled to consume caffeine in moderation, because large amounts of caffeine are associated with miscarriage. However, the relationship between caffeine, birthweight, and preterm birth is unclear.
If bleeding has already occurred, surgical intervention may be necessary. However, whether to pursue surgical intervention is an often difficult decision in a stable patient with minimal evidence of blood clot on ultrasound.
Surgeons use laparoscopy or laparotomy to gain access to the pelvis and can either incise the affected Fallopian and remove only the pregnancy (salpingostomy) or remove the affected tube with the pregnancy (salpingectomy). The first successful surgery for an ectopic pregnancy was performed by Robert Lawson Tait in 1883. It is estimated that an acceptable rate of PULs that eventually undergo surgery is between 0.5 and 11%.
Autotransfusion of a woman's own blood as drained during surgery may be useful in those who have a lot of bleeding into their abdomen.
Published reports that a re-implanted embryo survived to birth were debunked as false.
Treatment depends on diagnosis and may include hormonal therapy, iv fluids, blood transfusion, and/or a dilation and curettage. Internal bleeding requires laparoscopy or abdominal surgery, in rare and extreme cases a hysterectomy is performed.
The agents of choice for blood pressure control during eclampsia are hydralazine and/or labetalol. This is because of their effectiveness, lack of negative effects on the fetus, and mechanism of action.
Heterotopic pregnancy is treated with surgical removal of the ectopic gestation by salpingectomy or salpingostomy. Expectant management has been successfully applied in select cases. Successful salpingocentesis has also been reported.
If the baby has not yet been delivered, steps need to be taken to stabilize the woman and deliver her speedily. This needs to be done even if the baby is immature, as the eclamptic condition is unsafe for both baby and mother. As eclampsia is a manifestation of a multiorgan failure, other organs (liver, kidney, lungs, cardiovascular system, and coagulation system) need to be assessed in preparation for a delivery (often a caesarean section), unless the woman is already in advanced labor. Regional anesthesia for caesarean section is contraindicated when a coagulopathy has developed.
Acute fatty liver of pregnancy is best treated in a centre with expertise in hepatology, high-risk obstetrics, maternal-fetal medicine and neonatology. The physicians who treat this condition will often consult with experts in liver transplantation in severe cases. Admission to the intensive care unit is recommended.
Initial treatment involves supportive management with intravenous fluids, intravenous glucose and blood products, including fresh frozen plasma and cryoprecipitate to correct DIC. The foetus should be monitored with cardiotocography. After the mother is stabilized, arrangements are usually made for delivery. This may occur vaginally, but, in cases of severe bleeding or compromise of the mother's status, a caesarian section may be needed. Often AFLP is not diagnosed until the mother and baby are in trouble, so it is most likely that an emergency C-section is needed.
The complications of acute fatty liver of pregnancy may require treatment after delivery, especially if pancreatitis occurs. Liver transplantation is rarely required for treatment of the condition, but may be needed for mothers with severe DIC, those with rupture of the liver, or those with severe encephalopathy.
Severe acute bleeding, such as caused by ectopic pregnancy and post-partum hemorrhage, leads to hypovolemia (the depletion of blood from the circulation), progressing to shock. This is a medical emergency and requires hospital attendance and intravenous fluids, usually followed by blood transfusion. Once the circulating volume has been restored, investigations are performed to identify the source of bleeding and address it. Uncontrolled life-threatening bleeding may require uterine artery embolization (occlusion of the blood vessels supplying the uterus), laparotomy (surgical opening of the abdomen), occasionally leading to hysterectomy (removal of the uterus) as a last resort.
A possible complication from protracted vaginal blood loss is iron deficiency anemia, which can develop insidiously. Eliminating the cause will resolve the anemia, although some women require iron supplements or blood transfusions to improve the anemia.
Pregnancy does not have an adverse effect on the course of Behçet's disease and may possibly ameliorate its course. Still, there is a substantial variability in clinical course between patients and even for different pregnancies in the same patient. Also, the other way around, Behçet's disease confers an increased risk of pregnancy complications, miscarriage and Cesarean section.
Gynecologic hemorrhage needs to be evaluated as soon as possible by a physician. The amount and duration of bleeding will dictate whether a bleeding event is an emergency event.
Immune thrombocytopenic purpura (), sometimes called idiopathic thrombocytopenic purpura is a condition in which autoantibodies are directed against a patient's own platelets, causing platelet destruction and thrombocytopenia. Anti-platelet autoantibodies in a pregnant woman with immune thrombocytopenic purpura will attack the patient's own platelets and will also cross the placenta and react against fetal platelets. Therefore, is a significant cause of fetal and neonatal immune thrombocytopenia. Approximately 10% of newborns affected by will have platelet counts <50,000 μL and 1% to 2% will have a risk of intracerebral hemorrhage comparable to infants with .
Mothers with thrombocytopenia or a previous diagnosis of should be tested for serum antiplatelet antibodies. A woman with symptomatic thrombocytopenia and an identifiable antiplatelet antibody should be started on therapy for their which may include steroids or . Fetal blood analysis to determine the platelet count is not generally performed as -induced thrombocytopenia in the fetus is generally less severe than . Platelet transfusions may be performed in newborns, depending on the degree of thrombocytopenia.
With treatment, maternal mortality is about 1 percent, although complications such as placental abruption, acute renal failure, subcapsular liver hematoma, permanent liver damage, and retinal detachment occur in about 25% of women. Perinatal mortality (stillbirths plus death in infancy) is between 73 and 119 per 1000 babies of woman with HELLP, while up to 40% are small for gestational age. In general, however, factors such as gestational age are more important than the severity of HELLP in determining the outcome in the baby.
Abnormal bleeding after delivery, or postpartum hemorrhage, is the loss of greater than 500 ml of blood following vaginal delivery, or 1000 ml of blood following cesarean section. Other definitions of excessive postpartum bleeding are hemodynamic instability, drop of hemoglobin of more than 10%, or requiring blood transfusion. In the literature, primary postpartum hemorrhage is defined as uncontrolled bleeding that occurs in the first 24 hours after delivery while secondary hemorrhage occurs between 24 hours and six weeks.
In pregnancy, changes in the levels of female sex hormones, such as estrogen, make a woman more likely to develop candidal vulvovaginitis. During pregnancy, the "Candida" fungus is more prevalent (common), and recurrent infection is also more likely. There is no clear evidence that treatment of asymptomatic candidal vulvovaginitis in pregnancy reduces the risk of preterm birth. Candidal vulvovaginitis in pregnancy should be treated with intravaginal clotrimazole or nystatin for at least 7 days.
Besides placenta previa and placental abruption, uterine rupture can occur, which is a very serious condition leading to internal or external bleeding. Bleeding from the fetus is rare, but may occur with two conditions called vasa previa and velamentous umbilical cord insertion where the fetal blood vessels lie near the placental insertion site unprotected by Wharton's jelly of the cord. Occasionally this condition can be diagnosed by ultrasound. There are also tests to differentiate maternal blood from fetal blood which can help in determining the source of the bleed.