Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
If a person with heat exhaustion gets medical treatment, Emergency Medical Technicians (EMTs) or doctors and/or nurses may also:
- Give them supplemental oxygen
- Give them intravenous fluids and electrolytes if they are too confused to drink and/or are vomiting
First aid for heat exhaustion includes:
- Moving the person to a cool place
- Having the patient take off extra layers of clothes
- Cooling the patient down by fanning them and putting wet towels on their body
- Having them lie down and put their feet up if they are feeling dizzy
- Having them drink water or sports drinks – but only if they are awake, not confused nor vomiting
- Turning the person on their side if they are vomiting
Mild disease can be treated with fluids by mouth. In more significant disease spraying with mist and using a fan is useful. For those with severe disease putting them in lukewarm water is recommended if possible with transport to a hospital.
Prevention includes avoiding medications that can increase the risk of heat illness (e.g. antihypertensives, diuretics, and anticholinergics), gradual adjustment to heat, and sufficient fluids and electrolytes.
The basic treatment for heat syncope is like that for other types of fainting: the patient is positioned in a seating or supine position with legs raised. Water containing salt, or another drink containing electrolytes, is administered slowly, and the patient is moved to a cooler area, such as the shade.
The affected person should rest and recover, because heat syncope can lead to heat stroke or heat exhaustion.
Physical activity in extremely hot weather should be avoided. If a person starts to experience over heating, and symptoms of heat syncope, they should move or be moved to a shaded or cool area. It is also recommended to avoid alcoholic beverages in hot weather, because they cause dehydration which may worsen symptoms. Finally, drinking plenty of water is imperative when engaging in physical activity in hot weather.
The underlying cause must be removed. Mild hyperthemia caused by exertion on a hot day may be adequately treated through self-care measures, such as increased water consumption and resting in a cool place. Hyperthermia that results from drug exposure requires prompt cessation of that drug, and occasionally the use of other drugs as counter measures. Antipyretics (e.g., acetaminophen, aspirin, other nonsteroidal anti-inflammatory drugs) have no role in the treatment of heatstroke because antipyretics interrupt the change in the hypothalamic set point caused by pyrogens; they are not expected to work on a healthy hypothalamus that has been overloaded, as in the case of heatstroke. In this situation, antipyretics actually may be harmful in patients who develop hepatic, hematologic, and renal complications because they may aggravate bleeding tendencies.
When body temperature is significantly elevated, mechanical cooling methods are used to remove heat and to restore the body's ability to regulate its own temperatures. Passive cooling techniques, such as resting in a cool, shady area and removing clothing can be applied immediately. Active cooling methods, such as sponging the head, neck, and trunk with cool water, remove heat from the body and thereby speed the body's return to normal temperatures. Drinking water and turning a fan or dehumidifying air conditioning unit on the affected person may improve the effectiveness of the body's evaporative cooling mechanisms (sweating).
Sitting in a bathtub of tepid or cool water (immersion method) can remove a significant amount of heat in a relatively short period of time. It was once thought that immersion in very cold water is counterproductive, as it causes vasoconstriction in the skin and thereby prevents heat from escaping the body core. However, a British analysis of various studies stated: "this has never been proven experimentally. Indeed, a recent study using normal volunteers has shown that cooling rates were fastest when the coldest water was used." The analysis concluded that cool water immersion is the most-effective cooling technique for exertional heat stroke. No superior cooling method has been found for non-exertional heat stroke. Thus, aggressive ice-water immersion remains the gold standard for life-threatening heat stroke.
When the body temperature reaches about 40 °C, or if the affected person is unconscious or showing signs of confusion, hyperthermia is considered a medical emergency that requires treatment in a proper medical facility. In a hospital, more aggressive cooling measures are available, including intravenous hydration, gastric lavage with iced saline, and even hemodialysis to cool the blood.
Aggressiveness of treatment is matched to the degree of hypothermia. Treatment ranges from noninvasive, passive external warming to active external rewarming, to active core rewarming. In severe cases resuscitation begins with simultaneous removal from the cold environment and management of the airway, breathing, and circulation. Rapid rewarming is then commenced. Moving the person as little and as gently as possible is recommended as aggressive handling may increase risks of a dysrhythmia.
Hypoglycemia is a frequent complication and needs to be tested for and treated. Intravenous thiamine and glucose is often recommended, as many causes of hypothermia are complicated by Wernicke's encephalopathy.
The UK National Health Service advises the lay public against putting a person in a hot bath, massaging their arms and legs, using a heating pad, or giving them alcohol. These measures can cause blood to be directed to the skin, causing a fall in blood pressure to vital organs, potentially resulting in death.
Warm sweetened liquids can be given provided the person is alert and can swallow. Many recommend that alcohol and drinks with lots of caffeine be avoided. As most people are moderately dehydrated due to cold-induced diuresis, warmed intravenous fluids to a temperature of are often recommended.
When ambient temperature is excessive, humans and many animals cool themselves below ambient by evaporative cooling of sweat (or other aqueous liquid; saliva in dogs, for example); this helps prevent potentially fatal hyperthermia. The effectiveness of evaporative cooling depends upon humidity. Wet-bulb temperature, which takes humidity into account, or more complex calculated quantities such as wet-bulb globe temperature (WBGT), which also takes solar radiation into account, give useful indications of the degree of heat stress and are used by several agencies as the basis for heat-stress prevention guidelines. (Wet-bulb temperature is essentially the lowest skin temperature attainable by evaporative cooling at a given ambient temperature and humidity.)
A sustained wet-bulb temperature exceeding 35 °C is likely to be fatal even to fit and healthy people unclothed in the shade next to a fan; at this temperature, environmental heat gain instead of loss occurs. , wet-bulb temperatures only very rarely exceeded 30 °C anywhere, although significant global warming may change this.
In cases of heat stress caused by physical exertion, hot environments, or protective equipment, prevention or mitigation by frequent rest breaks, careful hydration, and monitoring body temperature should be attempted. However, in situations demanding one is exposed to a hot environment for a prolonged period or must wear protective equipment, a personal cooling system is required as a matter of health and safety. There is a variety of active or passive personal cooling systems; these can be categorized by their power sources and whether they are person- or vehicle-mounted.
Because of the broad variety of operating conditions, these devices must meet specific requirements concerning their rate and duration of cooling, their power source, and their adherence to health and safety regulations. Among other criteria are the user's need for physical mobility and autonomy. For example, active-liquid systems operate by chilling water and circulating it through a garment; the skin surface area is thereby cooled through conduction. This type of system has proven successful in certain military, law enforcement, and industrial applications. Bomb-disposal technicians wearing special suits to protect against improvised explosive devices (IEDs) use a small, ice-based chiller unit that is strapped to one leg; a liquid-circulating garment, usually a vest, is worn over the torso to maintain a safe core body temperature. By contrast, soldiers traveling in combat vehicles can face microclimate temperatures in excess of 65 °C and require a multiple-user, vehicle-powered cooling system with rapid connection capabilities. Requirements for hazmat teams, the medical community, and workers in heavy industry vary further.
Employers can establish prevention programs, which focus on having protocols to gradually increases workloads and concede on allowing on more breaks for new hired workers. Employers can control heat stress through engineering controls, work practices, providing training, implementing an acclimatization schedule, providing water and encouraging workers to drink often, and ensuring workers take appropriate rest breaks to cool down.
The main symptoms of heat stress are perspiration, increased heart rate, and dehydration. Other general symptoms include painful muscle cramps, extreme weakness, nausea, dizziness, headache, breathing fast and clammy, pale, cool, and/or moist skin or red, dry skin.
If the area is still partially or fully frozen, it should be rewarmed in the hospital with a warm bath with povidone iodine or chlorhexidine antiseptic. Active rewarming seeks to warm the injured tissue as quickly as possible without burning. The faster tissue is thawed, the less tissue damage occurs. According the Handford and colleagues, "The Wilderness Medical Society and State of Alaska Cold Injury Guidelines recommend a temperature of 37°C–39°C, which decreases the pain experienced by the patient whilst only slightly slowing rewarming time." Warming takes 15 minutes - 1 hour. Rewarming can be very painful, so pain management is important.
People with potential for large amputations and who present within 24 hours of injury can be given TPA with heparin. These medications should be withheld if there are any contraindications. Bone scans or CT angiography can be done to assess damage.
Blood vessel dilating medications such as iloprost may prevent blood vessel blockage. This treatment might be appropriate in grades 2-4 frostbite, when people get treatment within 48 hours. In addition to vasodilators, sympatholytic drugs can be used to counteract the detrimental peripheral vasoconstriction that occurs during frostbite.
The primary treatment strategy is to eliminate or discontinue the offensive agent. Supportive therapy, such as ice packs, may be provided to get the body temperature within physiologic range. In severe cases, when the fever is high enough (generally at or above ~104° F or 40° C), aggressive cooling such as an ice bath and pharmacologic therapy such as benzodiazepines may be deemed appropriate.
CSC should be done as soon as possible when operations permit. Intervention is provided as soon as symptoms appear.
The checks for responsiveness and breathing are carried out with the person horizontally supine. If unconscious but breathing, the recovery position is appropriate. If not breathing, rescue ventilation is necessary. Drowning can produce a gasping pattern of apnea while the heart is still beating, and ventilation alone may be sufficient, as the heart may be basically healthy, but hypoxic. The airway-breathing-circulation (ABC) sequence should be followed, rather than starting with compressions as is typical in cardiac arrest, as the basic problem is lack of oxygen. Five initial breaths are recommended, as the initial ventilation may be difficult because of water in the airways which can interfere with effective alveolar inflation. Thereafter a sequence of two breaths and 30 chest compressions is recommended, repeated until vital signs are re-established, the rescuers are unable to continue, or advanced life support is available.
Attempts to actively expel water from the airway by abdominal thrusts, Heimlich maneuver or positioning head downwards should be avoided as there is no obstruction by solids, and they delay the start of ventilation and increase the risk of vomiting, with a significantly increased risk of death, as aspiration of stomach contents is a common complication of resuscitation efforts.
Treatment for hypothermia may also be necessary. Because of the diving reflex, people submerged in cold water and apparently drowned may revive after a relatively long period of immersion. Rescuers retrieving a child from water significantly below body temperature should attempt resuscitation even after protracted immersion.
Heat cramps, a type of heat illness, are muscle spasms that result from loss of large amount of salt and water through exercise. Heat cramps are associated with cramping in the abdomen, arms and calves. This can be caused by inadequate consumption of fluids or electrolytes. Frequently, they don't occur until sometime later, especially at night or when relaxing. Heavy sweating causes heat cramps, especially when the water is replaced without also replacing salt or potassium.
Although heat cramps can be quite painful, they usually don't result in permanent damage, though they can be a symptom of heat stroke or heat exhaustion. Heat cramps can indicate a more severe problem in someone with heart disease or if they last for longer than an hour.
In order to prevent them, one may drink electrolyte solutions such as sports drinks during exercise or strenuous work or eat potassium-rich foods like bananas and apples. When heat cramps occur, the affected person should avoid strenuous work and exercise for several hours to allow for recovery.
Modern front-line combat stress treatment techniques are designed to mimic the historically used PIE techniques with some modification. BICEPS is the current treatment route employed by the U.S. military and stresses differential treatment by the severity of CSR symptoms present in the service member. BICEPS is employed as a means to treat CSR symptoms and return soldiers quickly to combat.
The following BICEPS program is taken from the USMC combat stress handbook:
Administration of oxygen at 15 litres per minute by face mask or bag valve mask is often sufficient, but tracheal intubation with mechanical ventilation may be necessary. Suctioning of pulmonary oedema fluid should be balanced against the need for oxygenation. The target of ventilation is to achieve 92% to 96% arterial saturation and adequate chest rise. Positive end-expiratory pressure will generally improve oxygenation. Drug administration via peripheral veins is preferred over endotracheal administration. Hypotension remaining after oxygenation may be treated by rapid crystalloid infusion. Cardiac arrest in drowning usually presents as asystole or pulseless electrical activity. Ventricular fibrillation is more likely to be associated with complications of pre-existing coronary artery disease, severe hypothermia, or the use of epinephrine or norepinephrine.
Amphetamine is a stimulant that has been found to improve both physical and cognitive performance. Amphetamine blocks the reuptake of dopamine and norepinephrine, which delays the onset of fatigue by increasing the amount of dopamine, despite the concurrent increase in norepinephrine, in the central nervous system. Amphetamine is a widely used substance among collegiate athletes for its performance enhancing qualities, as it can improve muscle strength, reaction time, acceleration, anaerobic exercise performance, power output at fixed levels of perceived exertion, and endurance.
Methylphenidate has also been shown to increase exercise performance in time to fatigue and time trial studies.
Caffeine is the most widely consumed stimulant in North America. In small doses, caffeine can improve endurance. Recently, it has also been shown to delay the onset of fatigue in exercise. The most probable mechanism for the delay of fatigue is through the obstruction of adenosine receptors in the central nervous system. Adenosine is a neurotransmitter that decreases arousal and increases sleepiness. By preventing adenosine from acting, caffeine removes a factor that promotes rest and delays fatigue.
The treatment options for hypohidrosis and anhidrosis is limited. Those with hypohidrosis should avoid drugs that can aggravate the condition (see medication-causes). They should limit activities that raise the core body temperature and if exercises are to be performed, they should be supervised and be performed in a cool, sheltered and well-ventilated environment. In instances where the cause is known, treatment should be directed at the primary pathology. In autoimmune diseases, such as Sjogren syndrome and systemic sclerosis, treatment of the underlying disease using immunosuppressive drugs may lead to improvement in hypohidrosis. In neurological diseases, the primary pathology is often irreversible. In these instances, prevention of further neurological damage, such as good glycaemic control in diabetes, is the cornerstone of management. In acquired generalized anhidrosis, spontaneous remission may be observed in some cases. Numerous cases have been reported to respond effectively to systemic corticosteroids. Although an optimum dose and regime has not been established, pulse methylprednisolone (up to 1000 mg ⁄ day) has been reported to have good effect.
To reduce the itching, an application of anti-itch cream containing hydrocortisone, calamine, or benzyl benzoate is often used (though calamine has been shown not to be effective). Hydrogen peroxide and capsaicin cream has also been effective. Another good way to relieve itching is to apply heat—either by using a hand held shower with water hot as one can stand, or by heating the bite with a hair dryer. The heat method will relieve itching for about four hours and will require repeating.
In some cases, the chigger is still present when the bite appears. A 10× magnifier can be used to see the chigger and it may be removed with fine-tipped tweezers. Once it is gone, covering the bite with nail polish, calamine lotion, vaseline or other petroleum jelly, baby oil, or anything else may help the pain and itching, but will neither suffocate the chigger nor help the bites heal any faster. Medication such as antihistamines or corticosteroid creams may be prescribed by doctors, and might help in some instances.
Cognitive behavioral therapy is the mainstay of treatment. At other times counseling, anti-anxiety and antidepressant medications have been shown to be of use.