Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Following a heart attack, nitrates, when taken for two days, and ACE-inhibitors decrease the risk of death. Other medications include:
Aspirin is continued indefinitely, as well as another antiplatelet agent such as clopidogrel or ticagrelor ("dual antiplatelet therapy" or DAPT) for up to twelve months. If someone has another medical condition that requires anticoagulation (e.g. with warfarin) this may need to be adjusted based on risk of further cardiac events as well as bleeding risk. In those who have had a stent, more than 12 months of clopidogrel plus aspirin does not affect the risk of death.
Beta blocker therapy such as metoprolol or carvedilol is recommended to be started within 24 hours, provided there is no acute heart failure or heart block. The dose should be increased to the highest tolerated. Contrary to what was long believed, the use of beta blockers does not appear to affect the risk of death, possibly because other treatments for MI have improved. When beta blocker medication is given within the first 24–72 hours of a STEMI no lives are saved. However, 1 in 200 people were prevented from a repeat heart attack, and another 1 in 200 from having an abnormal heart rhythm. Additionally, for 1 in 91 the medication causes a temporary decrease in the heart's ability to pump blood.
ACE inhibitor therapy should be started within 24 hours, and continued indefinitely at the highest tolerated dose. This is provided there is no evidence of worsening kidney failure, high potassium, low blood pressure, or known narrowing of the renal arteries. Those who cannot tolerate ACE inhibitors may be treated with an angiotensin II receptor antagonist.
Statin therapy has been shown to reduce mortality and subsequent cardiac events, and should be commenced with the aim of lowering LDL cholesterol. Other medications, such as ezetimibe, may also be added with this goal in mind.
Aldosterone antagonists (spironolactone or eplerenone) may be used if there is evidence of left ventricular dysfunction after an MI, ideally after beginning treatment with an ACE inhibitor.
The pain associated with myocardial infarction may be treated with nitroglycerin or morphine. Nitroglycerin (given under the tongue or intravenously) may improve the blood supply to the heart, and decrease the work the heart must do. It is an important part of therapy for its pain relief, despite there being no benefit to overall mortality. Morphine may also be used, and is effective for the pain associated with STEMI. The evidence for benefit from morphine on overall outcomes, however, is poor and there is some evidence of potential harm.
Aggressive risk factor modification is required for effective treatment of microvascular angina where exercise plays a major role. Several other treatment strategies including b-blockers, angiotensin-converting enzyme inhibitors, ranolazine, l-arginine, statin drugs and potentially estrogen replacement therapy have been shown to relieve anginal symptoms as well as improve vascular function. Nitrates may be effective for symptom relief. Further studies are required to determine whether specific treatments are associated with improved survival as well as decreased symptoms.
The most specific medicine to treat angina is nitroglycerin. It is a potent vasodilator that decreases myocardial oxygen demand by decreasing the heart's workload. Beta blockers and calcium channel blockers act to decrease the heart's workload, and thus its requirement for oxygen. Nitroglycerin should not be given if certain inhibitors such as sildenafil, tadalafil, or vardenafil have been taken within the previous 12 hours as the combination of the two could cause a serious drop in blood pressure. Treatments for angina are balloon angioplasty, in which the balloon is inserted at the end of a catheter and inflated to widen the arterial lumen. Stents to maintain the arterial widening are often used at the same time. Coronary bypass surgery involves bypassing constricted arteries with venous grafts. This is much more invasive than angioplasty.
The main goals of treatment in angina pectoris are relief of symptoms, slowing progression of the disease, and reduction of future events, especially heart attacks and death. Beta blockers (e.g., carvedilol, propranolol, atenolol) have a large body of evidence in morbidity and mortality benefits (fewer symptoms, less disability and longer life) and short-acting nitroglycerin medications have been used since 1879 for symptomatic relief of angina. Calcium channel blockers (such as nifedipine (Adalat) and amlodipine), isosorbide mononitrate and nicorandil are vasodilators commonly used in chronic stable angina. A new therapeutic class, called If inhibitor, has recently been made available: Ivabradine provides pure heart rate reduction leading to major anti-ischemic and antianginal efficacy. ACE inhibitors are also vasodilators with both symptomatic and prognostic benefit. Statins are the most frequently used lipid/cholesterol modifiers, which probably also stabilize existing atheromatous plaque. Low-dose aspirin decreases the risk of heart attack in patients with chronic stable angina, and was part of standard treatment. However, in patients without established cardiovascular disease, the increase in hemorrhagic stroke and gastrointestinal bleeding offsets any benefits and it is no longer advised unless the risk of myocardial infarction is very high.
Exercise is also a very good long-term treatment for the angina (but only particular regimens - gentle and sustained exercise rather than intense short bursts), probably working by complex mechanisms such as improving blood pressure and promoting coronary artery collateralisation.
Though sometimes used by patients, evidence does not support the use of Traditional Chinese Herbal Products (THCP) for angina
Identifying and treating risk factors for further coronary heart disease is a priority in patients with angina. This means testing for elevated cholesterol and other fats in the blood, diabetes and hypertension (high blood pressure), and encouraging smoking cessation and weight optimization.
The calcium channel blocker nifedipine prolongs cardiovascular event- and procedure-free survival in patients with coronary artery disease. New overt heart failures were reduced by 29% compared to placebo; however, the mortality rate difference between the two groups was statistically insignificant.
It is recommended that blood pressure typically be reduced to less than 140/90 mmHg. The diastolic blood pressure however should not be lower than 60 mmHg. Beta blockers are recommended first line for this use.
Coronary ischemia can be treated but not cured.
By changing lifestyle, further blockages can be prevented. A change in lifestyle, mixed with prescribed medication, can improve health.
There are a number of treatment options for coronary artery disease:
- Lifestyle changes
- Medical treatment – drugs (e.g., cholesterol lowering medications, beta-blockers, nitroglycerin, calcium channel blockers, etc.);
- Coronary interventions as angioplasty and coronary stent;
- Coronary artery bypass grafting (CABG)
Initial therapy of acute decompensated heart failure usually includes some combination of a vasodilator such as nitroglycerin, a loop diuretic such as furosemide, and non-invasive positive pressure ventilation (NIPPV).
Even if symptoms of heart failure are not present, medications can be used to treat the symptoms that are being experienced. These medicines work to control these symptoms as well as treat other health problems that might be present. They can work to improve the quality of life, slow down the progression of heart failure and reduce the risk for other complications that can occur due to heart failure. It is very important to take proper medicines exactly as prescribed by the physician.
A number of different medications are required for people who are experiencing heart failure. Common types of medications that are prescribed for heart failure patients include ACE inhibitors, vasodilators, beta blockers, aspirin, calcium channel blockers, and cholesterol lowering medications such as statins. Depending on the type of damage a patient has suffered and the underlying cause of the heart failure, any of these drug classes or a combination of them can be prescribed. Patients with heart pumping problems will use a different medication combination than those who are experiencing problems with the heart's ability to fill properly during diastole. Potentially dangerous drug interactions can occur when different drugs mix together and work against each other.
Nitrates such as nitroglycerin are often used as part of the initial therapy for ADHF.
Another option is nesiritide, although it should only be considered if conventional therapy has been ineffective or contraindicated as it is much more expensive than nitroglycerine and has not been shown to be of any greater benefit.
For patients in acute heart failure, ACE inhibitors, angiotensin receptor blockers, and beta blockers, are considered mainstays of heart failure treatment. But use of beta blockers specifically for takotsubo cardiomyopathy is controversial, because they may confer no benefit.
The treatment of takotsubo cardiomyopathy is generally supportive in nature, for it is considered a transient disorder. Treatment is dependent on whether patients experience heart failure or acute hypotension and shock. In many individuals, left ventricular function normalizes within two months. Aspirin and other heart drugs also appear to help in the treatment of this disease, even in extreme cases. After the patient has been diagnosed, and myocardial infarction (heart attack) ruled out, the aspirin regimen may be discontinued, and treatment becomes that of supporting the patient.
While medical treatments are important to address the acute symptoms of Takotsubo cardiomyopathy, further treatment includes lifestyle changes. It is important that the individual stay physically healthy while learning and maintaining methods to manage stress, and to cope with future difficult situations.
Although the symptoms of Takotsubo cardiomyopathy usually go away on their own and the condition completely resolves itself within a few weeks, some serious complications can happen that must be treated. These most commonly include congestive heart failure and very low blood pressure, and less commonly include blood clotting in the apex of the left ventricle, irregular heart beat, and tearing of the heart wall.
Depending on the type of cardiogenic shock, treatment involves infusion of fluids, or in shock refractory to fluids, inotropic medications. In case of an abnormal heart rhythm several anti-arrhythmic agents may be administered, e.g. adenosine.
Positive inotropic agents (such as dobutamine or milrinone), which enhance the heart's pumping capabilities, are used to improve the contractility and correct the low blood pressure. Should that not suffice an intra-aortic balloon pump (which reduces workload for the heart, and improves perfusion of the coronary arteries) or a left ventricular assist device (which augments the pump-function of the heart) can be considered. Finally, as a last resort, if the person is stable enough and otherwise qualifies, heart transplantation, or if not eligible an artificial heart, can be placed. These invasive measures are important tools- more than 50% of patients who do not die immediately due to cardiac arrest from a lethal abnormal heart rhythm and live to reach the hospital (who have usually suffered a severe acute myocardial infarction, which in itself still has a relatively high mortality rate), die within the first 24 hours. The mortality rate for those still living at time of admission who suffer complications (among others, cardiac arrest or further abnormal heart rhythms, heart failure, cardiac tamponade, a ruptured or dissecting aneurysm, or another heart attack) from cardiogenic shock is even worse around 85%, especially without drastic measures such as ventricular assist devices or transplantation.
Cardiogenic shock may be treated with intravenous dobutamine, which acts on β receptors of the heart leading to increased contractility and heart rate.
Patients with uncomplicated acute pericarditis can generally be treated and followed up in an outpatient clinic. However, those with high risk factors for developing complications (see above) will need to be admitted to an inpatient service, most likely an ICU setting. High risk patients include the following:
- subacute onset
- high fever (> 100.4 F/38 C) and leukocytosis
- development of cardiac tamponade
- large pericardial effusion (echo-free space > 20 mm) resistant to NSAID treatment
- immunocompromised
- history of oral anticoagulation therapy
- acute trauma
- failure to respond to seven days of NSAID treatment
Pericardiocentesis is a procedure whereby the fluid in a pericardial effusion is removed through a needle. It is performed under the following conditions:
- presence of moderate or severe cardiac tamponade
- diagnostic purpose for suspected purulent, tuberculosis, or neoplastic pericarditis
- persistent symptomatic pericardial effusion
NSAIDs in "viral" or "idiopathic" pericarditis. In patients with underlying causes other than viral, the specific etiology should be treated. With idiopathic or viral pericarditis, NSAID is the mainstay treatment. Goal of therapy is to reduce pain and inflammation. The course of the disease may not be affected. The preferred NSAID is ibuprofen because of rare side effects, better effect on coronary flow, and larger dose range. Depending on severity, dosing is between 300–800 mg every 6–8 hours for days or weeks as needed. An alternative protocol is aspirin 800 mg every 6–8 hours. Dose tapering of NSAIDs may be needed. In pericarditis following acute myocardial infarction, NSAIDs other than aspirin should be avoided since they can impair scar formation. As with all NSAID use, GI protection should be engaged. Failure to respond to NSAIDs within one week (indicated by persistence of fever, worsening of condition, new pericardial effusion, or continuing chest pain) likely indicates that a cause other than viral or idiopathic is in process.
Colchicine, which has been essential to treat recurrent pericarditis, has been supported for routine use in acute pericarditis by recent prospective studies. Colchicine can be given 0.6 mg twice a day (0.6 mg daily for patients <70 kg) for 3 months following an acute attack. It should be considered in all patients with acute pericarditis, preferably in combination with a short-course of NSAIDs. For patients with a first episode of acute idiopathic or viral pericarditis, they should be treated with an NSAID plus colchicine 1–2 mg on first day followed by 0.5 daily or twice daily for three months. It should be avoided or used with caution in patients with severe renal insufficiency, hepatobiliary dysfunction, blood dyscrasias, and gastrointestinal motility disorders.
Corticosteroids are usually used in those cases that are clearly refractory to NSAIDs and colchicine and a specific cause has not been found. Systemic corticosteroids are usually reserved for those with autoimmune disease.
Treatments for cardiomegaly include a combination of medication treatment and medical/surgical procedures. Below are some of the treatment options for individuals with cardiomegaly:
Medications
- Diuretics: to lower the amount of sodium and water in the body, which can help lower the pressure in the arteries and heart.
- Angiotensin-converting enzyme (ACE) inhibitors: to lower the blood pressure and improve the heart's pumping ability.
- Angiotensin receptor blockers (ARBs): to provide the benefits of ACE inhibitors for those who can't take ACE inhibitors.
- Beta blockers: to lower blood pressure and improve heart function.
- Digoxin: to help improve the pumping function of the heart and lessen the need for hospitalization for heart failure.
- Anticoagulants: to reduce the risk of blood clots that could cause a heart attack or stroke.
- Anti-arrhythmics: to keep the heart beating with a normal rhythm.
Medical devices to regulate the heartbeat
- Pacemaker: Coordinates the contractions between the left and right ventricle. In people who may be at risk of serious arrhythmias, drug therapy or an implantable cardioverter-defibrillator (ICD) may be used.
- ICDs: Small devices implanted in the chest to constantly monitor the heart rhythm and deliver electrical shocks when needed to control abnormal, rapid heartbeats. The devices can also work as pacemakers.
Surgical procedures
- Heart valve surgery: If an enlarged heart is caused by a problem with one of the heart valves, one may have surgery to remove the valve and replace it with either an artificial valve or a tissue valve from a pig, cow or deceased human donor. If blood leaks backward through a valve (valve regurgitation), the leaky valve may be surgically repaired or replaced.
- Coronary bypass surgery: If an enlarged heart is related to coronary artery disease, one may opt to have coronary artery bypass surgery.
- Left ventricular assist device: (LVAD): This implantable mechanical pump helps a weak heart pump. LVADs are often implanted while a patient waits for a heart transplant or, if the patient is not a heart transplant candidate, as a long-term treatment for heart failure.
- Heart transplant: If medications can't control the symptoms, a heart transplant is often a final option.
Cardiomegaly can progress and certain complications are common:
- Heart failure: One of the most serious types of enlarged heart, an enlarged left ventricle, increases the risk of heart failure. In heart failure, the heart muscle weakens, and the ventricles stretch (dilate) to the point that the heart can't pump blood efficiently throughout the body.
- Blood clots: Having an enlarged heart may make one more susceptible to forming blood clots in the lining of the heart. If clots enter the bloodstream, they can block blood flow to vital organs, even causing a heart attack or stroke. Clots that develop on the right side of the heart may travel to the lungs, a dangerous condition called a pulmonary embolism.
- Heart murmur: For people who have an enlarged heart, two of the heart's four valves — the mitral and tricuspid valves — may not close properly because they become dilated, leading to a backflow of blood. This flow creates sounds called heart murmurs.
- NOTE* The exact mortality rate for people with cardiomegaly is unknown. However, many people live for a very long time with an enlarged heart and if detected early, treatment can help improve the condition and prolong the lives of these people.
By increasing physical activity, it is possible to manage body weight, reduce blood pressure, and relieve stress.
The Center for Disease Control recommends 30 minutes of physical activity a day.
Instead of 30 minutes a day at one time, short bursts of physical activity for 8–10 minutes three times a day are also suitable. Exercising this way can reduce the risk of getting heart disease or coronary ischemia, if it is performed at moderate intensity.
Restoring adequate blood flow to the heart muscle in people with heart failure and significant coronary artery disease is strongly associated with improved survival, some research showing up to 75% survival rates over 5 years. A stem cell study indicated that using autologous cardiac stem cells as a regenerative approach for the human heart (after a heart attack) has great potential.
American Heart Association practice guidelines indicate (ICD) implantable cardioverter-defibrillator use in those with ischemic cardiomyopathy (40 days post-MI) that are (NYHA) New York Heart Association functional class I. LVEF of >30% is often used to differentiate primary from ischemic cardiomyopathy, and a prognostic indicator. At the same time, people who undergo ventricular restoration on top of coronary artery bypass show improved postoperative ejection fraction as compared to those treated with only coronary artery bypass surgery. Severe cases are treated with heart transplantation.
One of the most feared complications of acute pericarditis is cardiac tamponade. Cardiac tamponade is accumulation of enough fluid in the pericardial space --- pericardial effusion --- to cause serious obstruction to the inflow of blood to the heart. Signs of cardiac tamponade include distended neck veins, muffled heart sounds when listening with a stethoscope, and low blood pressure (together known as Beck's triad). This condition can be fatal if not immediately treated.
Another longer term complication of pericarditis, if it recurs over a longer period of time (normally more than 3 months), is progression to constrictive pericarditis. Recent studies have shown this to be an uncommon complication. The definitive treatment for constrictive pericarditis is pericardial stripping, which is a surgical procedure where the entire pericardium is peeled away from the heart.
The definitive treatment for constrictive pericarditis is pericardial stripping, which is a surgical procedure where the entire pericardium is peeled away from the heart. This procedure has significant risk involved, with mortality rates of 6% or higher in major referral centers.
A poor outcome is almost always the result after a pericardiectomy is performed for constrictive pericarditis whose origin was radiation-induced, further some patients may develop heart failure post-operatively.
The treatment in viral or idiopathic pericarditis is with aspirin, or non-steroidal anti-inflammatory drugs (NSAIDs such as ibuprofen). Colchicine may be added to the above as it decreases the risk of further episodes of pericarditis.
Severe cases may require one or more of the following:
- pericardiocentesis to treat pericardial effusion/tamponade
- antibiotics to treat tuberculosis or other bacterial causes.
- steroids are used in acute pericarditis but are not favored because they increase the chance of recurrent pericarditis.
- in rare cases, surgery
- in cases of constrictive pericarditis, pericardiectomy
For those who are stable with a monomorphic waveform the medications procainamide or sotalol may be used and are better than lidocaine. Evidence does not show that amiodarone is better than procainamide.
As a low magnesium level in the blood is a common cause of VT, magnesium sulfate can be given for torsades de pointes or if a low blood magnesium level is found/suspected.
Long-term anti-arrhythmic therapy may be indicated to prevent recurrence of VT. Beta-blockers and a number of class III anti-arrhythmics are commonly used, such as the beta-blockers carvedilol, metoprolol, and bisoprolol, and the Potassium-Channel-Blockers amiodarone, dronedarone,bretylium, sotalol, ibutilide, and dofetilide. Angiotensin-converting-eynsyme (ACE) inhibitors and aldostrone antatagonists are also sometimes used in this setting.
A person with pulseless VT is treated the same as ventricular fibrillation with high-energy (360J with a monophasic defibrillator, or 200J with a biphasic defibrillator) unsynchronised cardioversion (defibrillation). They will be unconscious.
The shock may be delivered to the outside of the chest using the two pads of an external defibrillator, or internally to the heart by an implantable cardioverter-defibrillator (ICD) if one has previously been inserted.
An ICD may also be set to attempt to overdrive pace the ventricle. Pacing the ventricle at a rate faster than the underlying tachycardia can sometimes be effective in terminating the rhythm. If this fails after a short trial, the ICD will usually stop pacing, charge up and deliver a defibrillation grade shock.
Initial treatment can be medical, involving the use of drugs like isoprenaline (Isuprel) and epinephrine (adrenaline). Definitive treatment is surgical, involving the insertion of a pacemaker – most likely one with sequential pacing such as a DDI mode as opposed to the older VVI mechanisms, and the doctor may arrange the patient to undergo electrocardiography to confirm this type of treatment.
One of the most important features differentiating ischemic cardiomyopathy from the other forms of cardiomyopathy is the shortened, or worsened all-cause mortality in patients with ischemic cardiomyopathy. According to several studies, coronary artery bypass graft surgery has a survival advantage over medical therapy (for ischemic cardiomyopathy) across varied follow-ups.
A complication that may occur in the acute setting soon after a myocardial infarction or in the weeks following is cardiogenic shock. Cardiogenic shock is defined as a hemodynamic state in which the heart cannot produce enough of a cardiac output to supply an adequate amount of oxygenated blood to the tissues of the body.
While the data on performing interventions on individuals with cardiogenic shock is sparse, trial data suggests a long-term mortality benefit in undergoing revascularization if the individual is less than 75 years old and if the onset of the acute myocardial infarction is less than 36 hours and the onset of cardiogenic shock is less than 18 hours. If the patient with cardiogenic shock is not going to be revascularized, aggressive hemodynamic support is warranted, with insertion of an intra-aortic balloon pump if not contraindicated. If diagnostic coronary angiography does not reveal a culprit blockage that is the cause of the cardiogenic shock, the prognosis is poor.
While corticosteroids are often used, evidence to support this is poor. Salicylates are useful for pain.
Steroids are reserved for cases where there is evidence of an involvement of the heart. The use of steroids may prevent further scarring of tissue and may prevent the development of sequelae such as mitral stenosis.