Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Usually no treatment is needed. Folic acid supplementation may help produce normal red blood cells and improve the symptoms of anemia
Most people with sickle-cell disease have intensely painful episodes called vaso-occlusive crises. However, the frequency, severity, and duration of these crises vary tremendously. Painful crises are treated symptomatically with pain medications; pain management requires opioid administration at regular intervals until the crisis has settled. For milder crises, a subgroup of patients manage on NSAIDs (such as diclofenac or naproxen). For more severe crises, most patients require inpatient management for intravenous opioids; patient-controlled analgesia (PCA) devices are commonly used in this setting. Diphenhydramine is also an effective agent that doctors frequently prescribe to help control itching associated with the use of opioids.
Management is similar to vaso-occlusive crisis, with the addition of antibiotics (usually a quinolone or macrolide, since cell wall-deficient ["atypical"] bacteria are thought to contribute to the syndrome), oxygen supplementation for hypoxia, and close observation. Should the pulmonary infiltrate worsen or the oxygen requirements increase, simple blood transfusion or exchange transfusion is indicated. The latter involves the exchange of a significant portion of the person's red cell mass for normal red cells, which decreases the percent of haemoglobin S in the patient's blood. The patient with suspected acute chest syndrome should be admitted to the hospital with worsening A-a gradient an indication for ICU admission.
Treatment for alpha-thalassemia may consist of blood transfusions, and possible splenectomy; additionally, gallstones may be a problem that would require surgery. Secondary complications from febrile episode should be monitored, and most individuals live without any need for treatment
Additionally, stem cell transplantation should be considered as a treatment (and cure), which is best done in early age. Other options, such as gene therapy, are still being developed.
Individuals heterozygous for the Hb Lepore request no particular treatment. There is no anemia or, if there is, it is very mild.
Genetic counseling may be appropriate for high-risk couples who wish to have a baby.
In cases where oral iron has either proven ineffective, would be too slow (for example, pre-operatively) or where absorption is impeded (for example in cases of inflammation), parenteral iron can be used. The body can absorb up to 6 mg iron daily from the gastrointestinal tract. In many cases the patient has a deficit of over 1,000 mg of iron which would require several months to replace. This can be given concurrently with erythropoietin to ensure sufficient iron for increased rates of erythropoiesis.
When treating iron-deficiency anemia, considerations of the proper treatment methods are done in light of the "cause and severity" of the condition. If the iron-deficiency anemia is a downstream effect of blood loss or another underlying cause, treatment is geared toward addressing the underlying cause when possible. In severe acute cases, treatment measures are taken for immediate management in the interim, such as blood transfusions or even intravenous iron.
Iron-deficiency anemia treatment for less severe cases includes dietary changes to incorporate iron-rich foods into regular oral intake. Foods rich in ascorbic acid (vitamin C) can also be beneficial, since ascorbic acid enhances iron absorption. Other oral options are iron supplements in the form of pills or drops for children.
As iron-deficiency anemia becomes more severe, or if the anemia does not respond to oral treatments, other measures may become necessary. In addition to the previously mentioned indication for intravenous iron or blood transfusions, intravenous iron may also be used when oral intake is not tolerated, as well as for other indications. Specifically, for those on dialysis, parenteral iron is commonly used. Individuals on dialysis who are taking forms of erythropoietin or some "erythropoiesis-stimulating agent" are given parenteral iron, which helps the body respond to the erythropoietin agents and produce red blood cells.
The various forms of treatment are not without possible adverse effects. Iron supplementation by mouth commonly causes negative gastrointestinal effects, including constipation. Intravenous iron can induce an allergic response that can be as serious as anaphylaxis, although different formulations have decreased the likelihood of this adverse effect.
Treatments for anemia depend on cause and severity. Vitamin supplements given orally (folic acid or vitamin B) or intramuscularly (vitamin B) will replace specific deficiencies.
The ideal treatment for anemia of chronic disease is to treat the chronic disease successfully, but this is rarely possible.
Parenteral iron is increasingly used for anemia in chronic renal disease and inflammatory bowel disease.
Erythropoietin can be helpful, but this is costly and may be dangerous. Erythropoietin is advised either in conjunction with adequate iron replacement which in practice is intravenous, or when IV iron has proved ineffective.
Splenectomy is usually ineffective for the treatment of cold agglutinin disease, because the liver is the predominant site of sequestration. However, if the patient has splenomegaly, then the disease may respond to splenectomy. More importantly, a lymphoma localized to the spleen may only be found after splenectomy.
A potential complication that may occur in children that suffer acute anemia with a hemoglobin count below 5.5 g/dl is silent stroke A silent stroke is a type of stroke that does not have any outward symptoms (asymptomatic), and the patient is typically unaware they have suffered a stroke. Despite not causing identifiable symptoms a silent stroke still causes damage to the brain, and places the patient at increased risk for both transient ischemic attack and major stroke in the future.
Patients with cold agglutinin disease should include good sources of folic acid, such as fresh fruits and vegetables, in their diet. Activities for these individuals should be less strenuous than those for healthy people, particularly for patients with anemia. Jogging in the cold could be very hazardous because of the added windchill factor.
Recombinant EPO (r-EPO) may be given to premature infants to stimulate red blood cell production. Brown and Keith (1999) studied two groups of 40 very low birth weight (VLBW) infants to compare the erythropoietic response between two and five times a week dosages of recombinant human erythropoietin (r-EPO) using the same dose. They established that more frequent dosing of the same weekly amount of r-EPO generated a significant and continuous increase in Hb in VLBW infants. The infants that received five dosages had 219,857 mm³ while infants that received two dosages only had 173,361 mm³. However, the response to r-EPO typically takes up to two weeks and the higher dosages lead to higher Hb. Brown and Keith (1999) study also showed responses between two dosage schedules (two times a week and five times a week). Infants were recruited for gestational age—age since conception—≤27 weeks and 28 to 30 weeks and then randomized into the two groups, each totaling 500 U/kg a week. Brown and Keith found that after two weeks of r-EPO administration, Hb counts had increased and leveled off; the infants who received r-EPO five times a week had significantly higher Hb counts. This was present at four weeks for all infants ≤30 weeks gestation and at 8 weeks for infants ≤27 weeks gestation.
To date, studies of r-EPO use in premature infants have had mixed results. Ohls et al. examined the use of early r-EPO plus iron and found no short-term benefits in two groups of infants (172 infants less than 1000 g and 118 infants 1000–1250 g). All r-EPO treated infants received 400 U/g three times a week until they reached 35 weeks gestational age. The use of r-EPO did not decrease the average number of transfusions in the infants born at less than 1000 g, or the percentage of infants in the 1000 to 1250 group. A multi-center European trial studied early versus late r-EPO in 219 infants with birth weights between 500 and 999 g. An r-EPO close of 750 U/kg/week was given to infants in both the early (1–9 weeks) and late (4–10 weeks) groups. The two r-EPO groups were compared to a control group who did not receive r-EPO. Infants in all three groups received 3 to 9 mg/kg of enteral iron. These investigators reported a slight decrease in transfusion and donor exposures in the early r-EPO group (1–9 weeks): 13% early, 11% late and 4% control group. It is likely that only a carefully selected subpopulation of infants may benefit from its use. Contrary to what just said, Bain and Blackburn (2004) also state in another study the use of r-EPO does not appear to have a significant effect on reducing the numbers of early transfusions in most infants, but may be useful to reduce numbers of late transfusion in extremely low-birth-weight infants. A British task force to establish transfusion guidelines for neonates and young children and to help try to explain this confusion recently concluded that “the optimal dose, timing, and nutritional support required during EPO treatment has yet to be defined and currently the routine use of EPO in this patient population is not recommended as similar reduction in blood use can probably be achieved with appropriate transfusion protocols.”
It is unclear if screening pregnant women for iron-deficiency anemia during pregnancy improves outcomes in the United States. The same holds true for screening children who are "6 to 24 months" old.
Other strategies involve the reduction of blood loss during phlebotomy.
Another treatment used is therapeutic strategies. These strategies are aimed at reducing transfusions have assessed the use of strict blood transfusions guidelines and EPO therapy, but reduction of blood loss is most important. For extremely low birth weight infants, laboratory blood testing using bedside devices offers a unique opportunity to reduce blood transfusions. This practice has been referred to as point-of-care testing. Use of these kind of devices to measure the most common ordered blood tests could significantly decrease phlebotomy loss and lead to a reduction in the need for blood transfusions among critically ill premature neonates. A study was done by Adams, Benitz, Geaghan, Kumar, Madan and Widness (2005) to test this theory by conducting a retrospective chart review on all inborn infants <1000g admitted to the NICU during two separate years. Conventional bench top laboratory analysis during the first year was done using Radiometer Blood Gas and Electrolyte Analyzer. Bedside blood gas analysis during the second year was performed using a point-of-care analyzer. An estimated blood loss in the two groups was determined based on the number of specific blood tests on individual infants. The study found that there was an estimated 30% reduction in the total volume of blood removed for the blood tests. This study concluded that there is modern technology that can be used instead of blood transfusions and r-EPO.
In terms of hemophilia C medication cyklokapron is often used for both treatment after an incident of bleeding and as a preventative measure to avoid excessive bleeding during oral surgery.
Treatment is usually not necessary, except in relation to operations, leading to many of those having the condition not being aware of it. In these cases, fresh frozen plasma or recombinant factor XI may be used, but only if necessary.
The afflicted may often suffer nosebleeds, while females can experience unusual menstrual bleeding which can be avoided by taking birth control such as: IUDs and oral or injected contraceptives to increase coagulation ability by adjusting hormones to levels similar to pregnancy.
Those with hereditary elliptocytosis have a good prognosis, only those with very severe disease have a shortened life expectancy.
Primary prophylaxis with low-molecular weight heparin, heparin, or warfarin is often considered in known familial cases. Anticoagulant prophylaxis is given to all who develop a venous clot regardless of underlying cause.
Studies have demonstrated an increased risk of recurrent venous thromboembolic events in patients with protein C deficiency. Therefore, long-term anticoagulation therapy with warfarin may be considered in these patients.
Homozygous protein C defect constitutes a potentially life-threatening disease, and warrants the use of supplemental protein C concentrates.
Liver transplant may be considered curative for homozygous protein C deficiency.
Methemoglobinemia can be treated with supplemental oxygen and methylene blue 1% solution (10 mg/ml) 1 to 2 mg/kg administered intravenously slowly over five minutes. Although the response is usually rapid, the dose may be repeated in one hour if the level of methemoglobin is still high one hour after the initial infusion. Methylene Blue inhibits monoamine oxidase and serotonin toxicity can occur if taken with an SSRI (selective serotonin reuptake inhibitor) medicine.
Methylene blue restores the iron in hemoglobin to its normal (reduced) oxygen-carrying state. This is achieved by providing an artificial electron acceptor (such as methylene blue or flavin) for NADPH methemoglobin reductase (RBCs usually don't have one; the presence of methylene blue allows the enzyme to function at 5× normal levels). The NADPH is generated via the hexose monophosphate shunt.
Genetically induced chronic low-level methemoglobinemia may be treated with oral methylene blue daily. Also, vitamin C can occasionally reduce cyanosis associated with chronic methemoglobinemia but has no role in treatment of acute acquired methemoglobinemia. Diaphorase normally contributes only a small percentage of the red blood cell's reducing capacity, but can be pharmacologically activated by exogenous cofactors (such as methylene blue) to 5 times its normal level of activity.
The vast majority of those with hereditary elliptocytosis require no treatment whatsoever. They have a mildly increased risk of developing gallstones, which is treated surgically with a cholecystectomy if pain becomes problematic. This risk is relative to the severity of the disease.
Folate helps to reduce the extent of haemolysis in those with significant haemolysis due to hereditary elliptocytosis.
Because the spleen breaks down old and worn-out blood cells, those individuals with more severe forms of hereditary elliptocytosis can have splenomegaly. Symptoms of splenomegaly can include:
- Vague, poorly localised abdominal pain
- Fatigue and dyspnoea
- Growth failure
- Leg ulcers
- Gallstones.
Removal of the spleen (splenectomy) is effective in reducing the severity of these complications, but is associated with an increased risk of overwhelming bacterial septicaemia, and is only performed on those with significant complications. Because many neonates with severe elliptocytosis progress to have only a mild disease, and because this age group is particularly susceptible to pneumococcal infections, a splenectomy is only performed on those under 5 years old when it is absolutely necessary.
Hemoglobin Hopkins-2 (Hb Hop-2) is a mutation of the protein hemoglobin, which is responsible for the transportation of oxygen through the blood from the lungs to the musculature of the body in vertebrates. Generally, the mutation causes two abnormal α chains in the protein's structure. Within the chains, the mutation is the result of hemoglobin's histidine amino acid being replaced with aspartic acid in the protein's genetic sequence. This amino acid structure change occurs at residue 112. Additionally, within one of the mutated alpha chains, there are substitutes at 114 and 118, two points on the amino acid chain. This mutation can cause sickle cell anemia.
Following the initial discovery of hemoglobin, two researchers working at Johns Hopkins Hospital in the mid-twentieth century, Ernest W. Smith and J.V. Torbert, discovered the Hopkins-2 mutation of hemoglobin. Work by Harvey A. Itano and Elizabeth A. Robinson in 1960 confirmed Smith's and Torbert's finding and emphasized the importance of the alpha loci in the mutation. Later in the twentieth century, Samuel Charache, another Hopkins affiliated scientist and doctor, studied the physiological impacts of the variant on health. His findings suggest that the variant plays no effect clinically.
Limiting some microbes' access to iron can reduce their virulence, thereby potentially reducing the severity of infection. Blood transfusion to patients with anemia of chronic disease is associated with a higher mortality, supporting the concept.
Two genetic loci exist for α globin, thus four genes are in diploid cells. Two genes are maternal and two genes are paternal in origin. The severity of the α-thalassemias is correlated with the number of affected α-globin; genes: the greater, the more severe will be the manifestations of the disease. When noting the genotype, an "α" indicates a functional alpha chain.
Treatment is almost always aimed to control hemorrhages, treating underlying causes, and taking preventative steps before performing invasive surgeries.
Hypoprothrombinemia can be treated with periodic infusions of purified prothrombin complexes. These are typically used as treatment methods for severe bleeding cases in order to boost clotting ability and increasing levels of vitamin K-dependent coagulation factors.
1. A known treatment for hypoprothrombinemia is menadoxime.
2. Menatetrenone was also listed as a Antihaemorrhagic vitamin.
3. 4-Amino-2-methyl-1-naphthol (Vitamin K5) is another treatment for hypoprothrombinemia.
1. Vitamin K forms are administered orally or intravenously.
4. Other concentrates include Proplex T, Konyne 80, and Bebulin VH.
Fresh Frozen Plasma infusion (FFP) is a method used for continuous bleeding episodes, every 3-5 weeks for mention.
1. Used to treat various conditions related to low blood clotting factors.
2. Administered by intravenous injection and typically at a 15-20 ml/kg/dose.
3. Can be used to treat acute bleeding.
Sometimes, underlying causes cannot be controlled or determined, so management of symptoms and bleeding conditions should be priority in treatment.
Invasive options, such as surgery or clotting factor infusions, are required if previous methods do not suffice. Surgery is to be avoided, as it causes significant bleeding in patients with hypoprothrombinemia.
Prognosis for patients varies and is dependent on severity of the condition and how early the treatment is managed.
1. With proper treatment and care, most people go on to live a normal and healthy life.
2. With more severe cases, a hematologist will need to be seen throughout the patient's life in order to deal with bleeding and continued risks.