Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Medical management of VHF patients may require intensive supportive care. Antiviral therapy with intravenous ribavirin may be useful in Bunyaviridae and Arenaviridae infections (specifically Lassa fever, RVF, CCHF, and HFRS due to Old World Hantavirus infection) and can be used only under an experimental protocol as investigational new drug (IND) approved by the U.S. Food and Drug Administration (FDA). Interferon may be effective in Argentine or Bolivian hemorrhagic fevers (also available only as IND).
With the exception of yellow fever vaccine neither vaccines nor experimental vaccines are readily available. Prophylactic (preventive) ribavirin may be effective for some bunyavirus and arenavirus infections (again, available only as IND).
VHF isolation guidelines dictate that all VHF patients (with the exception of dengue patients) should be cared for using strict contact precautions, including hand hygiene, double gloves, gowns, shoe and leg coverings, and faceshield or goggles. Lassa, CCHF, Ebola, and Marburg viruses may be particularly prone to nosocomial (hospital-based) spread. Airborne precautions should be utilized including, at a minimum, a fit-tested, HEPA filter-equipped respirator (such as an N-95 mask), a battery-powered, air-purifying respirator, or a positive pressure supplied air respirator to be worn by personnel coming within 1,8 meter (six feet) of a VHF patient. Multiple patients should be cohorted (sequestered) to a separate building or a ward with an isolated air-handling system. Environmental decontamination is typically accomplished with hypochlorite (e.g. bleach) or phenolic disinfectants.
All persons suspected of Lassa fever infection should be admitted to isolation facilities and their body fluids and excreta properly disposed of.
Early and aggressive treatment using ribavirin was pioneered by Joe McCormick in 1979. After extensive testing, early administration was determined to be critical to success. Additionally, ribavirin is almost twice as effective when given intravenously as when taken by mouth. Ribavirin is a prodrug which appears to interfere with viral replication by inhibiting RNA-dependent nucleic acid synthesis, although the precise mechanism of action is disputed. The drug is relatively inexpensive, but the cost of the drug is still very high for many of those in West African states. Fluid replacement, blood transfusion, and fighting hypotension are usually required. Intravenous interferon therapy has also been used.
When Lassa fever infects pregnant women late in their third trimester, induction of delivery is necessary for the mother to have a good chance of survival. This is because the virus has an affinity for the placenta and other highly vascular tissues. The fetus has only a one in ten chance of survival no matter what course of action is taken; hence, the focus is always on saving the life of the mother. Following delivery, women should receive the same treatment as other Lassa fever patients.
Work on a vaccine is continuing, with multiple approaches showing positive results in animal trials.
There are no specific antiviral drugs for dengue; however, maintaining proper fluid balance is important. Treatment depends on the symptoms. Those who are able to drink, are passing urine, have no "warning signs" and are otherwise healthy can be managed at home with daily follow-up and oral rehydration therapy. Those who have other health problems, have "warning signs", or cannot manage regular follow-up should be cared for in hospital. In those with severe dengue care should be provided in an area where there is access to an intensive care unit.
Intravenous hydration, if required, is typically only needed for one or two days. In children with shock due to dengue a rapid dose of 20 mL/kg is reasonable. The rate of fluid administration is then titrated to a urinary output of 0.5–1 mL/kg/h, stable vital signs and normalization of hematocrit. The smallest amount of fluid required to achieve this is recommended.
Invasive medical procedures such as nasogastric intubation, intramuscular injections and arterial punctures are avoided, in view of the bleeding risk. Paracetamol (acetaminophen) is used for fever and discomfort while NSAIDs such as ibuprofen and aspirin are avoided as they might aggravate the risk of bleeding. Blood transfusion is initiated early in people presenting with unstable vital signs in the face of a "decreasing hematocrit", rather than waiting for the hemoglobin concentration to decrease to some predetermined "transfusion trigger" level. Packed red blood cells or whole blood are recommended, while platelets and fresh frozen plasma are usually not. There is not enough evidence to determine if corticosteroids have a positive or negative effect in dengue fever.
During the recovery phase intravenous fluids are discontinued to prevent a state of fluid overload. If fluid overload occurs and vital signs are stable, stopping further fluid may be all that is needed. If a person is outside of the critical phase, a loop diuretic such as furosemide may be used to eliminate excess fluid from the circulation.
Oropouche Fever has no cure or specific therapy so treatment is done by relieving the pain of the symptoms through symptomatic treatment. Certain oral analgesic and anti-inflammatory agents can help treat headaches and body pains. In extreme cases of oropouche fever the drug, Ribavirin is recommended to help against the virus. This is called antiviral therapy. Treatments also consist of drinking lots of fluids to prevent dehydration.
Asprin is not a recommended choice of drug because it can reduce blood clotting and may aggravate the hemorrhagic effects and prolong recovery time.
The infection is usually self-limiting and complications are rare. This illness usually lasts for about a week but in extreme cases can be prolonged. Patients usually recover fully with no long term ill effects. There have been no recorded fatalities resulting from oropouche fever.
Prophylaxis by vaccination, as well as preventive measures like protective clothing, tick control, and mosquito control are advised. The vaccine for KFDV consists of formalin-inactivated KFDV. The vaccine has a 62.4% effectiveness rate for individuals who receive two doses. For individuals who receive an additional dose, the effectiveness increases to 82.9%. Specific treatments are not available.
Tetracycline-group antibiotics (doxycycline, tetracycline) are commonly used. Chloramphenicol is an alternative medication recommended under circumstances that render use of tetracycline derivates undesirable, such as severe liver malfunction, kidney deficiency, in children under nine years and in pregnant women. The drug is administered for seven to ten days.
The treatment for bacillary angiomatosis is erythromycin given for three to four months.
As for other flavivirus infections, no cure is known for yellow fever. Hospitalization is advisable and intensive care may be necessary because of rapid deterioration in some cases. Different methods for acute treatment of the disease have been shown not to be very successful; passive immunisation after emergence of symptoms is probably without effect. Ribavirin and other antiviral drugs, as well as treatment with interferons, do not have a positive effect in patients.
A symptomatic treatment includes rehydration and pain relief with drugs such as paracetamol (acetaminophen in the United States). Acetylsalicylic acid (aspirin) should not be given because of its anticoagulant effect, which can be devastating in the case of internal bleeding that can occur with yellow fever.
There is no treatment currently available. The virus generally resolves itself within a five to seven day period. The use of steroids can actually cause a corneal microbial superinfection which then requires antimicrobial therapy to eliminate.
There is no specific treatment for the disease. Pain killers and fluid replacement may be useful.
African tick bite fever is usually mild, and most patients do not need more than at-home treatment with antibiotics for their illness. However, because so few patients with this infection visit a doctor, the best antibiotic choice, dose and length of treatment are not well known. Typically doctors treat this disease with antibiotics that have been used effectively for the treatment of other diseases caused by bacteria of similar species, such as Rocky Mountain Spotted Fever.
For mild cases, people are usually treated with one of the following:
- doxycycline
- chloramphenicol
- ciprofloxacin
If a person has more severe symptoms, like a high fever or serious headache, the infection can be treated with doxycycline for a longer amount of time. Pregnant women should not use doxycycline or ciprofloxacin as both antibiotics can cause problems in fetuses. Josamycin has been used effectively for treatment of pregnant women with other rickettsial diseases, but it is unclear if it has a role in the treatment of ATBF.
Prevention of sandfly bites, and control of sandflies and their breeding grounds with insecticides are the principal methods for prevention. Mosquito nets may not be sufficient to prevent sandfly bites.
Treatment is similar to hepatitis B, but due to its high lethality, more aggressive therapeutic approaches are recommended in the acute phase. In absence of a specific vaccine against delta virus, the vaccine against HBV must be given soon after birth in risk groups.
There is no cure or vaccine for HFRS. Treatment involves supportive therapy including renal dialysis. Treatment with ribavirin in China and Korea, administered within 7 days of onset of fever, resulted in a reduced mortality as well as shortened course of illness.
The illness can be treated with tetracyclines (doxycycline is the preferred treatment), chloramphenicol, macrolides or fluoroquinolones.
No specific treatment for CTF is yet available. The first action is make sure the tick is fully removed from the skin, then acetaminophen and analgesics can be used to help relieve the fever and pain. Aspirin is not recommended for children, as it has been linked to Reye’s syndrome in some viral illnesses. Salicylates should not be used because of thrombocytopenia, and the rare occurrence of bleeding disorders. People who suspect they have been bitten by a tick or are starting to show signs of CTF should contact their physicians immediately.
Appropriate antibiotic treatment should be started immediately when there is a suspicion of Rocky Mountain spotted fever on the basis of clinical and epidemiological findings. Treatment should not be delayed until laboratory confirmation is obtained. In fact, failure to respond to a tetracycline argues against a diagnosis of Rocky Mountain spotted fever. Severely ill patients may require longer periods before their fever resolves, especially if they have experienced damage to multiple organ systems. Preventive therapy in healthy patients who have had recent tick bites is not recommended and may, in fact, only delay the onset of disease.
Doxycycline (a tetracycline) (for adults at 100 milligrams every 12 hours, or for children under at 4 mg/kg of body weight per day in two divided doses) is the drug of choice for patients with Rocky Mountain spotted fever, being one of the only instances doxycycline is used in children. Treatment should be continued for at least three days after the fever subsides, and until there is unequivocal evidence of clinical improvement. This will be generally for a minimum time of five to ten days. Severe or complicated outbreaks may require longer treatment courses. Doxycycline/ tetracycline is also the preferred drug for patients with ehrlichiosis, another tick-transmitted infection with signs and symptoms that may resemble those of Rocky Mountain spotted fever.
Chloramphenicol is an alternative drug that can be used to treat Rocky Mountain spotted fever, specifically in pregnancy. However, this drug may be associated with a wide range of side effects, and careful monitoring of blood levels can be required.
Relapsing fever is easily treated with a one- to two-week-course of antibiotics, and most people improve within 24 hours. Complications and death due to relapsing fever are rare.
Tetracycline-class antibiotics are most effective. These can, however, induce a Jarisch–Herxheimer reaction in over half those treated, producing anxiety, diaphoresis, fever, tachycardia and tachypnea with an initial pressor response followed rapidly by hypotension. Recent studies have shown tumor necrosis factor-alpha may be partly responsible for this reaction.
Prevention depends on control of and protection from the bites of the mosquito that transmits it. The World Health Organization recommends an Integrated Vector Control program consisting of five elements:
1. Advocacy, social mobilization and legislation to ensure that public health bodies and communities are strengthened;
2. Collaboration between the health and other sectors (public and private);
3. An integrated approach to disease control to maximize use of resources;
4. Evidence-based decision making to ensure any interventions are targeted appropriately; and
5. Capacity-building to ensure an adequate response to the local situation.
The primary method of controlling "A. aegypti" is by eliminating its habitats. This is done by getting rid of open sources of water, or if this is not possible, by adding insecticides or biological control agents to these areas. Generalized spraying with organophosphate or pyrethroid insecticides, while sometimes done, is not thought to be effective. Reducing open collections of water through environmental modification is the preferred method of control, given the concerns of negative health effects from insecticides and greater logistical difficulties with control agents. People can prevent mosquito bites by wearing clothing that fully covers the skin, using mosquito netting while resting, and/or the application of insect repellent (DEET being the most effective). However, these methods appear not to be sufficiently effective, as the frequency of outbreaks appears to be increasing in some areas, probably due to urbanization increasing the habitat of "A. aegypti". The range of the disease appears to be expanding possibly due to climate change.
Control requires treatment of antibiotics and vaccines prescribed by a doctor. Major control treatments for paratyphoid fever include ciprofloxacin for ten days, ceftriaxone/cefotaxime for 14 days, or aziththromycin.
Ticks should be removed promptly and carefully with tweezers and by applying gentle, steady traction. The tick's body should not be crushed when it is removed and the tweezers should be placed as close to the skin as possible to avoid leaving tick mouthparts in the skin; mouthparts left in the skin can allow secondary infections. Ticks should not be removed with bare hands. Hands should be protected by gloves and/or tissues and thoroughly washed with soap and water after the removal process.
A match or flame should not be used to remove a tick. This method, once thought safe, can cause the tick to regurgitate, expelling any disease it may be carrying into the bite wound.
Investigational vaccines exist for Argentine hemorrhagic fever and RVF; however, neither is approved by FDA or commonly available in the United States.
The structure of the attachment glycoprotein has been determined by X-ray crystallography and this glycoprotein is likely to be an essential component of any successful vaccine.
About 15–20% of hospitalized Lassa fever patients will die from the illness. The overall mortality rate is estimated to be 1%, but during epidemics, mortality can climb as high as 50%. The mortality rate is greater than 80% when it occurs in pregnant women during their third trimester; fetal death also occurs in nearly all those cases. Abortion decreases the risk of death to the mother. Some survivors experience lasting effects of the disease, and can include partial or complete deafness.
Because of treatment with ribavirin, fatality rates are continuing to decline.
Treatment of acute Q fever with antibiotics is very effective and should be given in consultation with an infectious diseases specialist. Commonly used antibiotics include doxycycline, tetracycline, chloramphenicol, ciprofloxacin, ofloxacin, and hydroxychloroquine. Chronic Q fever is more difficult to treat and can require up to four years of treatment with doxycycline and quinolones or doxycycline with hydroxychloroquine.
Q fever in pregnancy is especially difficult to treat because doxycycline and ciprofloxacin are contraindicated in pregnancy. The preferred treatment is five weeks of co-trimoxazole.
Those diagnosed with Type A of the bacterial strain rarely die from it except in rare cases of severe intestinal complications. With proper testing and diagnosis, the mortality rate falls to less than 1%. Antibiotics such as azithromycin are particularly effective in treating the bacteria.