Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Oral rehydration solution (ORS) (a slightly sweetened and salty water) can be used to prevent dehydration. Standard home solutions such as salted rice water, salted yogurt drinks, vegetable and chicken soups with salt can be given. Home solutions such as water in which cereal has been cooked, unsalted soup, green coconut water, weak tea (unsweetened), and unsweetened fresh fruit juices can have from half a teaspoon to full teaspoon of salt (from one-and-a-half to three grams) added per liter. Clean plain water can also be one of several fluids given. There are commercial solutions such as Pedialyte, and relief agencies such as UNICEF widely distribute packets of salts and sugar. A WHO publication for physicians recommends a homemade ORS consisting of one liter water with one teaspoon salt (3 grams) and two tablespoons sugar (18 grams) added (approximately the "taste of tears"). Rehydration Project recommends adding the same amount of sugar but only one-half a teaspoon of salt, stating that this more dilute approach is less risky with very little loss of effectiveness. Both agree that drinks with too much sugar or salt can make dehydration worse.
Appropriate amounts of supplemental zinc and potassium should be added if available. But the availability of these should not delay rehydration. As WHO points out, the most important thing is to begin preventing dehydration as early as possible. In another example of prompt ORS hopefully preventing dehydration, CDC recommends for the treatment of cholera continuing to give Oral Rehydration Solution during travel to medical treatment.
Vomiting often occurs during the first hour or two of treatment with ORS, especially if a child drinks the solution too quickly, but this seldom prevents successful rehydration since most of the fluid is still absorbed. WHO recommends that if a child vomits, to wait five or ten minutes and then start to give the solution again more slowly.
Drinks especially high in simple sugars, such as soft drinks and fruit juices, are not recommended in children under 5 years of age as they may "increase" dehydration. A too rich solution in the gut draws water from the rest of the body, just as if the person were to drink sea water. Plain water may be used if more specific and effective ORT preparations are unavailable or are not palatable. Additionally, a mix of both plain water and drinks perhaps too rich in sugar and salt can alternatively be given to the same person, with the goal of providing a medium amount of sodium overall. A nasogastric tube can be used in young children to administer fluids if warranted.
In many cases of diarrhea, replacing lost fluid and salts is the only treatment needed. This is usually by mouth – oral rehydration therapy – or, in severe cases, intravenously. Diet restrictions such as the BRAT diet are no longer recommended. Research does not support the limiting of milk to children as doing so has no effect on duration of diarrhea. To the contrary, WHO recommends that children with diarrhea continue to eat as sufficient nutrients are usually still absorbed to support continued growth and weight gain, and that continuing to eat also speeds up recovery of normal intestinal functioning. CDC recommends that children and adults with cholera also continue to eat.
Medications such as loperamide (Imodium) and bismuth subsalicylate may be beneficial; however they may be contraindicated in certain situations.
Treatment of acute rotavirus infection is nonspecific and involves management of symptoms and, most importantly, maintenance of hydration. If untreated, children can die from the resulting severe dehydration. Depending on the severity of diarrhea, treatment consists of oral rehydration, during which the child is given extra water to drink that contains small amounts of salt and sugar. Some infections are serious enough to warrant hospitalisation where fluids are given by intravenous drip or nasogastric tube, and the child's electrolytes and blood sugar are monitored. Antibiotics are not recommended.
Rotavirus infections rarely cause other complications and for a well managed child the prognosis is excellent.
Mild cases usually do not require treatment and will go away after a few days in healthy people. In cases where symptoms persist or when it is more severe, specific treatments based on the initial cause may be required.
In cases where diarrhoea is present, replenishing fluids lost is recommended, and in cases with prolonged or severe diarrhoea which persists, intravenous rehydration therapy or antibiotics may be required. A simple oral rehydration therapy (ORS) can be made by dissolving one teaspoon of salt, eight teaspoons of sugar and the juice of an orange into one litre of clean water. Studies have shown the efficacy of antibiotics in reducing the duration of the symptoms of infectious enteritis of bacterial origin, however antibiotic treatments are usually not required due to the self-limiting duration of infectious enteritis.
Treatment is symptomatic and aims to prevent dehydration in young pigs, using products such as electrolyte and energy supplements. Good biosecurity protocols such as adequate quarantine, isolation of cases, and disinfection help prevent entry or spread of the disease in the herd. In Canada, the Canadian Swine Health Board developed detailed protocols on how to adequately disinfect transportation vehicles for live hogs and ensure the quality of the disinfecttion protocol.
Treatment of acute rotavirus infection is nonspecific and involves management of symptoms and, most importantly, management of dehydration. If untreated, children can die from the resulting severe dehydration. Depending on the severity of diarrhoea, treatment consists of oral rehydration therapy, during which the child is given extra water to drink that contains specific amounts of salt and sugar. In 2004, the World Health Organisation (WHO) and UNICEF recommended the use of low-osmolarity oral rehydration solution and zinc supplementation as a two-pronged treatment of acute diarrhoea. Some infections are serious enough to warrant hospitalisation where fluids are given by intravenous therapy or nasogastric intubation, and the child's electrolytes and blood sugar are monitored. Probiotics have been shown to reduce the duration of rotavirus diarrhoea, and according to the European Society for Pediatric Gastroenterology "effective interventions include administration of specific probiotics such as "Lactobacillus rhamnosus" or "Saccharomyces boulardii", diosmectite or racecadotril." Rotavirus infections rarely cause other complications and for a well managed child the prognosis is excellent.
Once diagnosed, tropical sprue can be treated by a course of the antibiotic tetracycline or sulphamethoxazole/trimethoprim (co-trimoxazole) for 3 to 6 months.
Supplementation of vitamins B and folic acid improves appetite and leads to a gain in weight.
Preventive measures for visitors to tropical areas where the condition exists include steps to reduce the likelihood of gastroenteritis. These may comprise using only bottled water for drinking, brushing teeth, and washing food, and avoiding fruits washed with tap water (or consuming only peeled fruits, such as bananas and oranges). Basic sanitation is necessary to reduce fecal-oral contamination and the impact of environmental enteropathy in the developing world.
Treatment is directed largely towards management of underlying cause:
- Replacement of nutrients, electrolytes and fluid may be necessary. In severe deficiency, hospital admission may be required for nutritional support and detailed advice from dietitians. Use of enteral nutrition by naso-gastric or other feeding tubes may be able to provide sufficient nutritional supplementation. Tube placement may also be done by percutaneous endoscopic gastrostomy, or surgical jejunostomy. In patients whose intestinal absorptive surface is severely limited from disease or surgery, long term total parenteral nutrition may be needed.
- Pancreatic enzymes are supplemented orally in pancreatic insufficiency.
- Dietary modification is important in some conditions:
- Gluten-free diet in coeliac disease.
- Lactose avoidance in lactose intolerance.
- Antibiotic therapy to treat Small Bowel Bacterial overgrowth.
- Cholestyramine or other bile acid sequestrants will help reducing diarrhoea in bile acid malabsorption.
There is no treatment currently available. The virus generally resolves itself within a five to seven day period. The use of steroids can actually cause a corneal microbial superinfection which then requires antimicrobial therapy to eliminate.
Rotavirus is highly contagious and cannot be treated with antibiotics or other drugs. Because improved sanitation does not decrease the prevalence of rotaviral disease, and the rate of hospitalisations remains high despite the use of oral rehydrating medicines, the primary public health intervention is vaccination. In 1998, a rotavirus vaccine was licensed for use in the United States. Clinical trials in the United States, Finland, and Venezuela had found it to be 80 to 100% effective at preventing severe diarrhoea caused by rotavirus A, and researchers had detected no statistically significant serious adverse effects. The manufacturer, however, withdrew it from the market in 1999, after it was discovered that the vaccine may have contributed to an increased risk for intussusception, a type of bowel obstruction, in one of every 12,000 vaccinated infants. The experience provoked intense debate about the relative risks and benefits of a rotavirus vaccine.
In 2006, two new vaccines against infection were shown to be safe and effective in children, and in 2009, the WHO recommended that rotavirus vaccine be included in all national immunisation programmes.
The incidence and severity of rotavirus infections has declined significantly in countries that have acted on this recommendation. A 2014 review of available clinical trial data from countries routinely using rotavirus vaccines in their national immunisation programs found that rotavirus vaccines have reduced rotavirus hospitalisations by 49–92 percent and all cause diarrhoea hospitalisations by 17–55 percent. In Mexico, which in 2006 was among the first countries in the world to introduce rotavirus vaccine, diarrhoeal disease death rates dropped during the 2009 rotavirus season by more than 65 percent among children age two and under. In Nicaragua, which in 2006 became the first developing country to introduce a rotavirus vaccine, severe rotavirus infections were reduced by 40 percent and emergency room visits by a half. In the United States, rotavirus vaccination since 2006 has led to drops in rotavirus-related hospitalisations by as much as 86 percent. The vaccines may also have prevented illness in non-vaccinated children by limiting the number of circulating infections. In developing countries in Africa and Asia, where the majority of rotavirus deaths occur, a large number of safety and efficacy trials as well as recent post-introduction impact and effectiveness studies of Rotarix and RotaTeq have found that vaccines dramatically reduced severe disease among infants. In September 2013, the vaccine was offered to all children in the UK, aged between two and three months, and it is expected to halve the cases of severe infection and reduce the number of children admitted to hospital because of the infection by 70 percent. In Europe, hospitalisation rates following infection by rotavirus have decreased by 65% to 84% following the introduction of the vaccine. Globally, vaccination has reduced hospital admissions and emergency department visits by a median of 67%.
Rotavirus vaccines are licensed in over 100 countries, and more than 80 countries have introduced routine rotavirus vaccination, almost half with the support of Gavi, the Vaccine Alliance. To make rotavirus vaccines available, accessible, and affordable in all countries—particularly low- and middle-income countries in Africa and Asia where the majority of rotavirus deaths occur, PATH (formerly Program for Appropriate Technology in Health), the WHO, the U.S. Centers for Disease Control and Prevention, and Gavi have partnered with research institutions and governments to generate and disseminate evidence, lower prices, and accelerate introduction.
Because improved sanitation does not decrease the prevalence of rotaviral disease, and the rate of hospitalisations remains high, despite the use of oral rehydrating medicines, the primary public health intervention is vaccination. Two rotavirus vaccines against Rotavirus A infection are safe and effective in children: Rotarix by GlaxoSmithKline and RotaTeq by Merck. Both are taken orally and contain attenuated live virus.
Rotavirus vaccines are licensed in more than 100 countries, but only 17 countries have introduced routine rotavirus vaccination. Following the introduction of routine rotavirus vaccination in the US in 2006, the health burden of rotavirus gastroenteritis "rapidly and dramatically reduced" despite lower coverage levels compared to other routine infant immunizations. Clinical trials of the Rotarix rotavirus vaccine in South Africa and Malawi, found that the vaccine significantly reduced severe diarrhoea episodes caused by rotavirus, and that the infection was preventable by vaccination. A 2012 Cochrane review of 41 clinical trials that included 186,263 participants concluded Rotarix and RotaTeq are effective vaccines. Additional rotavirus vaccines are under development. The World Health Organization(WHO) recommends that rotavirus vaccine be included in all national immunisation programmes. The incidence and severity of rotavirus infections has declined significantly in countries that have acted on this recommendation.
The Rotavirus Vaccine Program is a collaboration between PATH, the (WHO), and the U.S. Centers for Disease Control and Prevention, and is funded by the GAVI Alliance. The Program aims to reduce child morbidity and mortality from diarrhoeal disease by making a vaccine against rotavirus available for use in developing countries.
Vasopressors may be used if blood pressure does not improve with fluids. There is no evidence of substantial superiority of one vasopressor over another; however, using dopamine leads to an increased risk of arrythmia when compared with norepinephrine. Vasopressors have not been found to improve outcomes when used for hemorrhagic shock from trauma but may be of use in neurogenic shock. Activated protein C (Xigris) while once aggressively promoted for the management of septic shock has been found not to improve survival and is associated with a number of complications. Xigris was withdrawn from the market in 2011, and clinical trials were discontinued. The use of sodium bicarbonate is controversial as it has not been shown to improve outcomes. If used at all it should only be considered if the pH is less than 7.0.
Aggressive intravenous fluids are recommended in most types of shock (e.g. 1–2 liter normal saline bolus over 10 minutes or 20 ml/kg in a child) which is usually instituted as the person is being further evaluated. Which intravenous fluid is superior, colloids or crystalloids, remains undetermined. Thus as crystalloids are less expensive they are recommended. If the person remains in shock after initial resuscitation packed red blood cells should be administered to keep the hemoglobin greater than 100 g/l.
For those with haemorrhagic shock the current evidence supports limiting the use of fluids for penetrating thorax and abdominal injuries allowing mild hypotension to persist (known as permissive hypotension). Targets include a mean arterial pressure of 60 mmHg, a systolic blood pressure of 70–90 mmHg, or until their adequate mentation and peripheral pulses.
Symptoms of short bowel syndrome are usually addressed with medication. These include:
- Anti-diarrheal medicine (e.g. loperamide, codeine)
- Vitamin, mineral supplements and L-glutamine powder mixed with water
- H2 blocker and proton pump inhibitors to reduce stomach acid
- Lactase supplement (to improve the bloating and diarrhoea associated with lactose intolerance)
In 2004, the USFDA approved a therapy that reduces the frequency and volume of total parenteral nutrition (TPN), comprising: NutreStore (oral solution of glutamine) and Zorbtive (growth hormone, of recombinant DNA origin, for injection) together with a specialized oral diet. In 2012, an advisory panel to the USFDA voted unanimously to approve for treatment of SBS the agent teduglutide, a glucagon-like peptide-2 analog developed by NPS Pharmaceuticals, who intend to market the agent in the United States under the brandname Gattex. Teduglutide had been previously approved for use in Europe and is marketed under the brand Revestive by Nycomed.
Surgical procedures to lengthen dilated bowel include the Bianchi procedure, where the bowel is cut in half and one end is sewn to the other, and a newer procedure called serial transverse enteroplasty (STEP), where the bowel is cut and stapled in a zigzag pattern. Heung Bae Kim, MD, and Tom Jaksic, MD, both of Children's Hospital Boston, devised the STEP procedure in the early 2000s. The procedure lengthens the bowel of children with SBS and may allow children to avoid the need for intestinal transplantation. As of June 2009, Kim and Jaksic have performed 18 STEP procedures. The Bianchi and STEP procedures are usually performed by pediatric surgeons at quaternary hospitals who specialize in small bowel surgery.
Lymphocytic and collagenous colitis have both been shown in randomized, placebo-controlled trials to respond well to budesonide, a glucocorticoid. Budesonide formulated to be active in the distal colon and rectum is effective for both active disease and in the prevention of relapse. However, relapse occurs frequently after withdrawal of therapy.
Studies of a number of other agents including antidiarrheals, bismuth subsalicylate (Pepto-Bismol), mesalazine/mesalamine (alone or in combination with cholestyramine), systemic corticosteroids, cholestyramine, immunomodulators, and probiotics have shown to be less effective than budesonide for treating both forms of microscopic colitis.
Anti-TNF inhibitors. split ileostomy, diverting ileostomy, and subtotal colectomy are options for management of steroid-dependent or refractory microscopic colitis. Currently, the need to resort to surgery is limited considering the improvement of drug therapy options. However, surgery is still considered for patients with severe, unresponsive microscopic colitis.
Treatment is directed at the prevention of haemorrhagic shock. Standard dose prednisolone does not increase the platelet count. High-dose methylprednisolone therapy in children with Onyalai has been shown to improve platelet count and reduce the requirement for transfusions. Vincristine sulphate may be of benefit to some patients. Splenectomy is indicated in patients with severe uncontrollable haemorrhage. High-dose intravenous gammaglobulin may help in increasing the platelet count and cessation of haemorrhage.
The side effects of penicillin can be altered by taking other medications at the same time. Taking oral contraceptives along with penicillin may lower the effects of the contraceptive. When probenecid is used concurrently with penicillin, kidney excretion of probenecid is increase resulting in higher blood levels of penicillin in the circulation. In some instances, this would be intended therapeutic effect. In other instances, this is an unintended side effect. Neomycin can lower the absorption of penicillin from the gastrointestinal tract resulting in lower than expected levels of penicillin in the circulation. This side effect may result in an ineffective therapeutic effect of penicillin. When methotrexate is administered with penicillin, toxicity may occur related to methotrexante.
Prophylaxis by vaccination, as well as preventive measures like protective clothing, tick control, and mosquito control are advised. The vaccine for KFDV consists of formalin-inactivated KFDV. The vaccine has a 62.4% effectiveness rate for individuals who receive two doses. For individuals who receive an additional dose, the effectiveness increases to 82.9%. Specific treatments are not available.
Unfortunately mesna is ineffective as a treatment once hemorrhagic cystitis has developed. Although rare, once a case of radiation-induced hemorrhagic cystitis is diagnosed there is no empirically-proven treatments to heal this type of condition, which can severely degrade a patient's quality of life and might possibly lead to renal failure with risk of death.
Viral hemorrhagic cystitis in children generally spontaneously resolves within a few days.
The first step in the treatment of HC should be directed toward clot evacuation. Bladder outlet obstruction from clots can lead to urosepsis, bladder rupture, and renal failure. Clot evacuation can be performed by placing a wide-lumen bladder catheter at bedside. The bladder can be irrigated with water or sodium chloride solution. The use of water is preferable because water can help with clot lysis. Care must be taken to not overdistend the bladder and cause a perforation.. Hyperbaric oxygen (HBO2) therapy has been proven to be effective in treating radiation-induced hemorrhagic cystitis.
When penicillin is used at high doses hypokalemia, metabolic acidosis, and hyperkalemia can occur. Developing hypernatremia after administering high doses of penicillin can be a serious side effect.
Inflammation of the gastrointestinal tract is common after treatment with radiation therapy to the abdomen or pelvis. It is classified as early if it manifests within the first 3 months, and delayed if it manifests 3 months after treatment. Early radiation enteritis is caused by cell death of the crypt epithelium and subsequent mucosal inflammation, however usually subsides after the course of radiation therapy is completed. Delayed radiation enteritis is a chronic disease which has a complex pathogenesis involving changes in the majority of the intestinal wall.
Amphistomiasis is considered a neglected tropical disease, with no prescription drug for treatment and control. Therefore, management of infestation is based mainly on control of the snail population, which transmit the infective larvae of the flukes. However, there are now drugs shown to be effective including resorantel, oxyclozanide, clorsulon, ivermectin, niclosamide, bithional and levamisole. An in vitro demonstration shows that plumbagin exhibits high efficacy on adult flukes. Since the juvenile flukes are the causative individuals of the disease, effective treatment means control of the immature fluke population. Prophylaxis is therefore based on disruption of the environment (such as proper drainage) where the carrier snails inhabit, or more drastic action of using molluscicides to eradicate the entire population. For treatment of the infection, drugs effective against the immature flukes are recommended for drenching. For this reason oxyclozanide is advocated as the drug of choice. It effectively kills the flukes within a few hours and it effective against the flukes resistant to other drugs. The commercially prescribed dosage is 5 mg/kg body weight or 18.7 mg/kg body weight in two divided dose within 72 hours. Niclosamide is also extensively used in mass drenching of sheep. Successfully treated sheep regain appetite within a week, diarrhoea stops in about three days, and physiological indicators (such as plasma protein and albumin levels) return to normal in a month.
Porcine epidemic diarrhoea is a condition caused by the porcine epidemic diarrhea virus that leads to severe gastrointestinal disease in pigs.
It is closely related to the agent responsible for transmissible gastroenteritis in pigs. Piglets are most susceptible to the disease, as are young adults during periods of stress. Transmission is via the faecal-oral route.
Currently, no therapeutic drugs are prescribed for the disease. Therefore, prevention is the sole mode of treatment. This disease can only be prevented by quarantining sick birds and preventing migration of birds around the house, causing them to spread the disease. Deworming of birds with anthelmintics can reduce exposure to the cecal nematodes that carry the protozoan. Good management of the farm, including immediate quarantine of infected birds and sanitation, is the main useful strategy for controlling the spread of the parasitic contamination. The only drug used for the control (prophylaxis) in the United States is nitarsone at 0.01875% of feed until 5 days before marketing. Natustat and nitarsone were shown to be effective therapeutic drugs. Nifurtimox, a compound with known antiprotozoal activity, was demonstrated to be significantly effective at 300–400 ppm, and well tolerated by turkeys.