Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment primarily consists of reducing eosinophil levels and preventing further damage to organs. Corticosteroids, such as Prednisone, are good for reducing eosinophil levels and antineoplastics are useful for slowing eosinophil production. Surgical therapy is rarely utilised, however splenectomy can reduce the pain due to spleen enlargement. If damage to the heart (in particular the valves), then prosthetic valves can replace the current organic ones. Follow-up care is vital for the survival of the patient, as such the patient should be checked for any signs of deterioration regularly. After promising results in drug trials (95% efficiency in reducing blood eosinophil count to acceptable levels) it is hoped that in the future hypereosinophilic syndrome, and diseases related to eosinophils such as asthma and eosinophilic granulomatosis with polyangiitis, may be treated with the monoclonal antibody Mepolizumab currently being developed to treat the disease. If this becomes successful, it may be possible for corticosteroids to be eradicated and thus reduce the amount of side effects encountered.
Immunoglobulin E (IgE) is important in mast cell function. Immunotherapy with anti-IgE immunoglobulin raised in sheep resulted in a transient decrease in the numbers of circulating mast cells in one patient with mast cell leukemia. Although splenectomy has led to brief responses in patients with mast cell leukemia, no firm conclusions as to the efficacy of this treatment are possible. Chemotherapy with combination of cytosine arabinoside and either idarubicin, daunomycin, or mitoxantrone as for acute myeloid leukemia has been used. Stem cell transplantation is an option, although no experience exists concerning responses and outcome.
A wide range of drugs are known to cause hypereosinophilia or eosinophilia accompanied by an array of allergic symptoms. Rarely, these reactions are severe causing, for example, the drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome. While virtually any drug should be considered as a possible cause of these signs and symptoms, the following drugs and drug classes are some of the most frequently reported causes: penicillins, cephalosporins, dapsone, sulfonamides, carbamazepine, phenytoin, lamotrigine, valproic acid, nevirapine, efavirenz, and ibuprofen. These drugs may cause severely toxic reactions such as the DRESS syndrome. Other drugs and drug classes often reported to cause increased blood eosinophil levels accompanied by less severe (e.g. non-DRESS syndrome) symptoms include tetracyclins, doxycycline, linezolid, nitrofurantoin, metronidazole, carbamazepine, phenobarbital, lamotrigine, valproate, desipramine, amitriptyline, fluoxetine, piroxicam, diclofenac, ACE inhibitors, abacavir, nevirapine, ranitidine, cyclosporin, and hydrochlorothiazide.
The toxic oil syndrome is associated with hypereosinophilia/eosinophilia and systemic symptoms due to one or more contaminants in rapeseed oil and the Eosinophilia–myalgia syndrome, also associated with hypereosinophilia, appears due to trace contaminants in certain commercial batches of the amino acid, L-tryptophan.
Certain malignancies cause a secondary eosinophilia or, less commonly, hypereosinophilia. These increases in blood eosinophils appear due to the release of stimulatory cytokines or invasion of the bone marrow and thereby irritation of resident eosinophils or their precursors. Malignancies associated with these effects include gastric, colorectal, lung, bladder, and thyroid cancers, as well as squamous cell cancers of the cervix, vagina, penis, skin, and nasopharyrnx. Some hematological malignancies are likewise associated with secondary rises in blood eosinophil counts; these include Hodgkin disease, certain T-cell lymphomas, acute myeloid leukemia , the myelodysplastic syndromes, many cases of systemic mastocytosis, chronic myeloid leukemia, polycythemia vera, essential thrombocythemia, myelofibrosis, chronic myelomonocytic leukemia, and certain cases of T-lymphoblastic leukemia/lymphoma-associated or myelodysplastic–myeloproliferative syndrome-associated eosinophilias.
Most patients with "ETV6-ACSL6"-related disease present with findings similar to eosinophilia, hypereosinophila, or chronic eosinophilic leukemia; at least 4 cases presented with eosinophilia plus findings of the red blood cell neoplasm, polycythemia vera; three cases resembled acute myelogenous leukemia; and one case presented with findings of a combined Myelodysplastic syndrome/myeloproliferative neoplasm. Best treatments for "ETV6-ACSL6"-related disease are unclear. Patients with the polycythemia vera form of the disease have been treated by reducing the circulating red blood cell load by phlebotomy or suppressing red blood cell formation using hydroxyurea. Individual case studies report that "ETV6-ACSL6"-associated disease is insensitive to tyrosine kinase inhibitors. Best treatment currently available, therefore, may involve chemotherapy and bone marrow transplantion.
Acute mast cell leukemia is extremely aggressive and has a grave prognosis. In most cases, multi-organ failure including bone marrow failure develops over weeks to months. Median survival after diagnosis is only about 6 months.
Patients with hematological disease related to the cited "FLT3" fusion genes present with either a myeloid or lymphoid neoplasm plus eosinophilia. Four of 6 patients with "ETV6-FLT3"-related disease, a patient with "GOLGB1-FLT3"-related disease, and a patient with "TRIP11-FLT3"-related disease presented with findings similar to T-cell lymphoma while a patient with "SPTBN1-FLT3"-related disease had findings of chronic myelogenous leukemia. Two patients with "ETV6-FLT3"-related disease experienced complete hematologic remissions when treated with a multi-kinase inhibitor, sunitinib, that has inhibitory activity against FLT3 protein. However, these remissions were short-lived. A third patient with "ETV6-FLT3"-related disease was treated with a similarly active kinase inhibitor, sorafenib. This patient achieved a complete hematological response and was then given a hematopoietic stem cell transplantation. The latter treatment regimen, FLT3 inhibitor followed by hematopoietic stem cell transplantation, may be the best approach currently available for treating "FLT3"-releated hematological disease.
The treatment of CMML remains challenging due to the lack of clinical trials investigating the disease as its own clinical entity. It is often grouped with MDS in clinical trials, and for this reason the treatment of CMML is very similar to that of MDS. Most cases are dealt with as supportive rather than curative because most therapies do not effectively increase survival. Indications for treatment include the presence of B symptoms, symptomatic organ involvement, increasing blood counts, hyperleukocytosis, leukostasis and/or worsening cytopaenias.
Blood transfusions and EPO administration are used to raise haemoglobin levels in cases with anaemia.
Azacitidine is a drug approved by the US Food & Drug Administration (FDA) for the treatment of CMML and by the European Medicines Agency for high risk non-proliferative CMML with 10-19% marrow blasts. It is a cytidine analogue that causes hypomethylation of DNA by inhibition of DNA methyltransferase. Decitabine is a similar drug to azacitidine and is approved by the FDA for treatments of all subtypes of MDS, including CMML. Hydroxyurea is a chemotherapy that is used in the myeloproliferative form of CMML to reduce cell numbers.
Haematopoietic stem cell transplant remains the only curative treatment for CMML. However, due to the late age of onset and presence of other illnesses, this form of treatment is often not possible.
The European Medicines Agency (EMA) estimated the prevalence of HES at the time of granting orphan drug designation for HES in 2004 at 1.5 in 100,000 people, corresponding to a current prevalence of about 8,000 in the EU, 5,000 in the U.S., and 2,000 in Japan.
Patients who lack chronic heart failure and those who respond well to Prednisone or a similar drug have a good prognosis. However, the mortality rate rises in patients with anaemia, chromosomal abnormalities or a very high white blood cell count.
Since leukostais/ hyperleukostasis is associated with leukemia, preventative treatments are put into action upon diagnosis.
Patients with hyerleukocystois associated with leukemia are always considered candidates for tumor lysis syndrome prophylaxis in addition to aggressive intravenous hydration with allopurinol or rasburicase to decrease serum uric acid levels.
Treat the underlying cause
Blood transfusion (PRBC) according to need
Treatment includes utilization of prophylactic methods in the event that the patient has been diagnosed with hyperleukocystosis. This is usually in combination with other treatments which are dependent on the type of leukemia. Specific treatments include lysis syndrome treatment in addition to aggressive intravenous hydration with allopurinol or rasburicase to decrease serum uric acid levels.
Since a primary cause of leukocystatis is caused by leukemia, surgery is often a treatment and dependent on tumor size and location.
Hematopoietic cell transplants are critical to correct leukostasis and leukemia.
Cytoreduction is also a critical course of treatment in order to rapidly decrease white blood cell counts. Twenty to forty percent of patients diagnosed with hyperkeuckocytosis die within the first week of symptom presentation. Patients with the best outcome have none or limited symptoms of respiratory or neurological distress. An accumulation of these symptoms leads to decreased levels of statistical survival compared to patients diagnosed with asymptomatic hyperleukocytosis alone.
Cytoreduction methods include chemotherapy, utilizing the drug hydroxyurea ( Hydroxyurea is usually used in asymptomatic hyperleukocytosis), and the less common leukapheresis procedure. This procedure is often utilized for asymptomatic hyperleuckocytosis patients who have induction chemotherapy postponed for patient specific factors.
Variants of Chemotherapy, including induction chemotherapy, are used to treat both elevated white blood cells counts while simultaneously targeting leukemia cells in bone marrow.
Prognosis of patients suffering from hyperleukocytosis is dependent on the cause and type of leukemia the patient has. Patients diagnosed with asymptomatic hyerpleukocytosis have significantly better survival rates than symptomatic hyperleuckocytosis (leukostasis). Preventative measures and contentious monitoring of patients diagnosed with leukemia is critical in receiving treatment as early as possible to prevent and treat hyperleuckocytosis.
The dramatic response to a commonly used drug for filaria (diethylcarbamazine) almost confirms the diagnosis. No universal treatment guidelines have been established for tropical pulmonary eosinophilia. The antifilarial diethylcarbamazine (6 mg/kg/day in three divided doses for 21 days remains the main therapeutic agent, and is generally well tolerated. Reported side effects include headache, fever, pruritus and gastrointestinal upset. The eosinophil count often falls dramatically within 7–10 days of starting treatment.
Chronic myelomonocytic leukaemia (CMML) is a type of leukaemia, which are cancers of the blood-forming cells of the bone marrow. In adults, blood cells are formed in the bone marrow, by a process that is known as haematopoiesis. In CMML, there are increased numbers of monocytes and immature blood cells (blasts) in the peripheral blood and bone marrow, as well as abnormal looking cells (dysplasia) in at least one type of blood cell.
CMML shows characteristics of a myelodysplastic syndrome (MDS); a disorder that produces abnormal looking blood cells, and a myeloproliferative disorder (MPD); a disorder characterised by the overproduction of blood cells. For this reason CMML was reclassified as a MDS/MPN overlap disorder in 2002. For a diagnosis of CMML, the World Health Organisation (WHO) states that the blood monocyte count must be >1x10/L, no Philadelphia chromosome or mutations in the PDGFRA or PDGFRB gene should be present, the blast count must be <20% and dysplasia of at least one lineage of myeloid blood cell should be present.
Azacitidine is a drug used to treat CMML and is approved by the Food and Drug Administration (FDA) and the European Medicines Agency. Stem cell transplant is also used to treat CMML, and involves the transplantation of donor haematopoietic stem cells into the recipient. Blood transfusion and erythropoietin are used to treat disease associated anaemia.
Cordocentesis can be performed in utero to determine the platelet count of the fetus. This procedure is only performed if a "prior" pregnancy was affected by . Intrauterine transfusions can be performed during cordocentesis for primary prevention of intracerebral hemorrhage. Any administered cellular blood products must be irradiated to reduce the risk of graft-versus-host disease in the fetus. Additionally, all administered blood products should be reduced-risk ( seronegative and leukoreduced are considered essentially equivalent for the purposes of risk reduction).
If intrauterine platelet transfusions are performed, they are generally repeated weekly (platelet lifespan after transfusion is approximately 8 to 10 days). Platelets administered to the fetus must be negative for the culprit antigen (often -1a, as stated above). Many blood suppliers (such as American Red Cross and United Blood Services) have identified -1a negative donors. An alternative donor is the mother who is, of course, negative for the culprit antigen. However, she must meet general criteria for donation and platelets received from the mother must be washed to remove the offending alloantibody and irradiated to reduce the risk of graft-versus-host disease. If platlet transfusions are needed urgently, incompatible platelets may be used, with the understanding that they may be less effective and that the administration of any blood product carries risk.
The use of Intravenous immunoglobulin () during pregnancy and immediately after birth has been shown to help reduce or alleviate the effects of in infants and reduce the severity of thrombocytopenia. The most common treatment is weekly infusions at a dosage of 1 g/kg beginning at 16 to 28 weeks of pregnancy, depending on the severity of the disease in the previous affected child, and continuing until the birth of the child. In some cases this dosage is increased to 2 g/kg and/or combined with a course of prednisone depending on the exact circumstances of the case. Although this treatment has not been shown to be effective in all cases it has been shown to reduce the severity of thrombocytopenia in some. Also, it is suspected that (though not understood why) provides some added protection from intercranial haemorrhage () to the fetus. Even with treatment, the fetal platelet count may need to be monitored and platelet transfusions may still be required.
The goal of both and platelet transfusion is to avoid hemorrhage. Ultrasound monitoring to detect hemorrhage is not recommended as detection of intracranial hemorrhage generally indicates permanent brain damage (there is no intervention that can be performed to reverse the damage once it has occurred).
Before delivery, the fetal platelet count should be determined. A count of >50,000 μL is recommended for vaginal delivery and the count should be kept above 20,000 μL after birth.
Immune thrombocytopenic purpura (), sometimes called idiopathic thrombocytopenic purpura is a condition in which autoantibodies are directed against a patient's own platelets, causing platelet destruction and thrombocytopenia. Anti-platelet autoantibodies in a pregnant woman with immune thrombocytopenic purpura will attack the patient's own platelets and will also cross the placenta and react against fetal platelets. Therefore, is a significant cause of fetal and neonatal immune thrombocytopenia. Approximately 10% of newborns affected by will have platelet counts <50,000 μL and 1% to 2% will have a risk of intracerebral hemorrhage comparable to infants with .
Mothers with thrombocytopenia or a previous diagnosis of should be tested for serum antiplatelet antibodies. A woman with symptomatic thrombocytopenia and an identifiable antiplatelet antibody should be started on therapy for their which may include steroids or . Fetal blood analysis to determine the platelet count is not generally performed as -induced thrombocytopenia in the fetus is generally less severe than . Platelet transfusions may be performed in newborns, depending on the degree of thrombocytopenia.
Basopenia (or basocytopenia) is a form of agranulocytosis associated with a deficiency of basophils.
It has been proposed as an indicator of ovulation.It is difficult to detect without flow cytometry, because normal levels are so low.
It can be defined as less than 0.01 x 10 / L.
The disease is marked by an inappropriate and ineffective T cell activation that leads to an increased hemophagocytic activity. The T cell activated macrophages engulf erythrocytes, leukocytes, platelets, as well as their progenitor cells. Such finding is common in the syndrome, which is also referred to as hemophagocytic lymphohistiocytosis (HLH). Along with pancytopenia, HLH is characterized by fever, splenomegaly, and hemophagocytosis in bone marrow, liver, or lymph nodes.
Treatment of THB deficiencies consists of THB supplementation (2–20 mg/kg per day) or diet to control blood phenylalanine concentration and replacement therapy with neurotransmitters precursors (L-DOPA and 5-HTP) and supplements of folinic acid in DHPR deficiency.
Tetrahydrobiopterin is available as a tablet for oral administration in the form of "tetrahydrobiopterin dihydrochloride" (BH4*2HCL). BH4*2HCL is FDA approved under the trade name Kuvan. The typical cost of treating a patient with Kuvan is $100,000 per year. BioMarin holds the patent for Kuvan until at least 2024, but Par Pharmaceutical has a right to produce a generic version by 2020. BH4*2HCL is indicated at least in tetrahydrobiopterin deficiency caused by GTPCH deficiency or PTPS deficiency.
People who have been bitten by a black widow spider are recommended to seek professional medical assistance for symptoms. Symptoms self-resolve in hours to days in a majority of bites without medical intervention.
Medical treatments have varied over the years. Some treatments (e.g. calcium gluconate) have been discovered to be useless. Currently, treatment usually involves symptomatic therapy with pain medication, muscle relaxants, and antivenom. When the pain becomes unbearable, antivenom is administered. Antivenom historically completely resolves pain in a short time. Antivenom is made by injecting horses with latrodectus venom over a period of time. The horse develops antibodies against the venom. The horse is bled and the antibodies purified for later use. Doctors recommend the use of anti-inflammatory medications before antivenom administration, because antivenom can induce allergic reactions to the horse proteins. The efficacy of antivenom has come under scrutiny as patients receiving placebo have also recovered quickly.
Antivenom is used widely in Australia for redback bites; however, in the United States it is less commonly used. Antivenom made from prior spider bite victims has been used since the 1920s. Opiates such as morphine relieve pain and benzodiazepines ease muscle spasm in most patients.
Severe pancreatitis can cause organ failure, necrosis, infected necrosis, pseudocyst, and abscess. If diagnosed with severe acute pancreatitis, people will need to be admitted to a high dependency unit or intensive care unit. It is likely that the levels of fluids inside the body will have dropped significantly as it diverts bodily fluids and nutrients in an attempt to repair the pancreas. The drop in fluid levels can lead to a reduction in the volume of blood within the body, which is known as hypovolemic shock. Hypovolemic shock can be life-threatening as it can very quickly starve the body of the oxygen-rich blood that it needs to survive. To avoid going into hypovolemic shock, fluids will be pumped intravenously. Oxygen will be supplied through tubes attached to the nose and ventilation equipment may be used to assist with breathing. Feeding tubes may be used to provide nutrients, combined with appropriate analgesia.
As with mild acute pancreatitis, it will be necessary to treat the underlying cause—gallstones, discontinuing medications, cessation of alcohol, etc. If the cause is gallstones, it is likely that an ERCP procedure or removal of the gallbladder will be recommended. The gallbladder should be removed during the same hospital admission or within two weeks of pancreatitis onset so as to limit the risk of recurrent pancreatitis. If the cause of pancreatitis is alcohol, cessation of alcohol consumption and treatment for alcohol dependency may improve pancreatitis. Even if the underlying cause is not related to alcohol consumption, doctors recommend avoiding it for at least six months as this can cause further damage to the pancreas during the recovery process. Oral intake, especially fats, is generally restricted initially but early enteral feeding within 48 hours has been shown to improve clinical outcomes. Fluids and electrolytes are replaced intravenously. Nutritional support is initiated via tube feeding to surpass the portion of the digestive tract most affected by secreted pancreatic enzymes if there is no improvement in the first 72–96 hours of treatment.
The only effective treatment is prompt delivery of the baby. Several medications have been investigated for the treatment of HELLP syndrome, but evidence is conflicting as to whether magnesium sulfate decreases the risk of seizures and progress to eclampsia. The disseminated intravascular coagulation is treated with fresh frozen plasma to replenish the coagulation proteins, and the anemia may require blood transfusion. In mild cases, corticosteroids and antihypertensives (labetalol, hydralazine, nifedipine) may be sufficient. Intravenous fluids are generally required. Hepatic hemorrhage can be treated with embolization, as well, if life-threatening bleeding ensues.
The University of Mississippi standard protocol for HELLP includes corticosteroids. However, a 2009 review found "no conclusive evidence" supporting corticosteroid therapy, and a 2010 systematic review by the Cochrane Collaboration also found "no clear evidence of any effect of corticosteroids on substantive clinical outcomes" either for the mothers or for the newborns,
The treatment of mild acute pancreatitis is successfully carried out by admission to a general hospital ward. Traditionally, people were not allowed to eat until the inflammation resolved but more recent evidence suggests early feeding is safe and improves outcomes. Because pancreatitis can cause lung damage and affect normal lung function, oxygen is occasionally delivered through breathing tubes that are connected via the nose. The tubes can then be removed after a few days once it is clear that the condition is improving. Dehydration may result during an episode of acute pancreatitis, so fluids will be provided intravenously. Opioids may be used for the pain. Early feeding does not appear to cause problems and may result in an ability to leave hospital sooner.
The treatment of 2-Hydroxyglutaric aciduria is based on seizure control, the prognosis depends on how severe the condition is.
During an acute hyperammonemic episode, oral proteins must be avoided and intravenous (I.V.) lipids, glucose and insulin (if needed) should be given to promote anabolism. I.V. nitrogen scavenging therapy (with sodium benzoate and/or sodium phenylacetate) should normalize ammonia levels, but if unsuccessful, hemodialysis is recommended. Long-term management involves dietary protein restriction as well as arginine supplementation. In those with frequent episodes of metabolic decompensation or with hyperammonemia even when following a protein-restricted diet, daily oral nitrogen scavenging therapy may be successful. Orthotopic liver transplantation offers long-term relief of hyperammonemia but does not seem to sufficiently correct neurological complications. Arterial hypertension can be treated by restoring nitric oxide deficiency