Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment protocol is not well established. Some sources report that approximately half of the patients will fully recover after lengthy (mean time 14.5 months, range 2–24 months) expectant management.
Treatment with steroids is lengthy and usually requires about 6 months. While some source report very good success with steroids most report a considerable risk of recurrence after a treatment with steroids alone. Steroids are known to cause elevation of prolactin levels and increase risk of several conditions such as diabetes, and other endocrinopathies which in turn increase the risk of IGM. Treatment with topical steroids to limit side effects was also reported in one case. For surgical treatment recurrence rates of 5-50% have been reported.
A 1997 literature review article recommended complete resection or corticosteroid therapy, stating also that long-term follow-up was indicated due to a high rate of recurrence.
Treatment with a combination of glucocorticoids and prolactin lowering medications such as bromocriptine or cabergoline was used with good success in Germany. Prolactin lowering medication has also been reported to reduce the risk of recurrence. In cases of drug-induced hyperprolactinemia (such as antipsychotics) prolactin-sparing medication can be tried.
Methotrexate alone or in combination with steroids has been used with good success. Its principal mechanism of action is immunomodulating activity, with a side effect profile that is more favorable for treating IGM.
Colchicine, azathioprine and NSAIDs have also been used.
Corticosteroids, typically high-dose prednisone (1 mg/kg/day), must be started as soon as the diagnosis is suspected (even before the diagnosis is confirmed by biopsy) to prevent irreversible blindness secondary to ophthalmic artery occlusion. Steroids do not prevent the diagnosis from later being confirmed by biopsy, although certain changes in the histology may be observed towards the end of the first week of treatment and are more difficult to identify after a couple of months. The dose of prednisone is lowered after 2–4 weeks, and slowly tapered over 9–12 months. Tapering may require two or more years. Oral steroids are at least as effective as intravenous steroids, except in the treatment of acute visual loss where intravenous steroids appear to offer significant benefit over oral steroids. It is unclear if adding a small amount of aspirin is beneficial or not as it has not been studied.
Anti-tumour necrosis factor α antagonists (e.g. infliximab)
Dietary restriction of a particular suspected or proven antigen may be involved in the management of OFG, such as cinnamon or benzoate-free diets.
It was shown through various testing that administration of Bromocriptine can improve field of vision defects and lower prolactin levels. It was also found that when using corticosteroids, there was a decrease in size of the gland, and relieved compression on the dura mater. These corticosteroids were also found to have an immunosuppressive effect which helped with reducing the autoimmune reaction of the gland.
The prognosis for hypophysitis was variable for each individual. The depending factors for hypophysitis included the advancement of the mass on the Sella Turcica, percentage of fibrosis, and the body's response to corticosteroids. Through the use of Corticosteroids, the vision defects tend to recover when the gland size began to decrease. The prognoses of the limited number of reported cases were usually good.
The customary treatment involves long term dosage of prednisone, alternated or combined with cytotoxic drugs, such as cyclophosphamide or azathioprine.
Plasmapheresis may also be indicated in the acute setting to remove ANCA antibodies.
Rituximab has been investigated, and in April 2011 approved by the FDA when used in combination with glucocorticoids in adult patients.
Incision drainage with proper evacuation of the fluid followed by anti-tubercular medication.
The acute uveitis phase of VKH is usually responsive to high-dose oral corticosteroids; parenteral administration is usually not required. However, ocular complications may require an subtenon or intravitreous injection of corticosteroids or bevacizumab. In refractory situations, other immunosuppressives such as cyclosporine, or tacrolimus, antimetabolites (azathioprine, mycophenolate mofetil or methotrexate), or biological agents such as intravenous immunoglobulins (IVIG) or infliximab may be needed.
Physicians often prescribe the antibiotic trimethoprim-sulfamethoxazole to prevent bacterial infections. This drug also has the benefit of sparing the normal bacteria of the digestive tract. Fungal infection is commonly prevented with itraconazole, although a newer drug of the same type called voriconazole may be more effective. The use of this drug for this purpose is still under scientific investigation.
The standard treatment for GPA is cyclophosphamide and high dose corticosteroids for remission induction and less toxic immunosuppressants like azathioprine, leflunomide, methotrexate or mycophenolate mofetil. Trimethoprim/sulfamethoxazole may also help prevent relapse. Rituximab may be substituted for cyclophosphamide in inducing remission.
A systematic review of 84 trials examined the evidence for various treatments in GPA. Many trials include data on pooled groups of people with GPA and microscopic polyangiitis. In this review, cases are divided between localised disease, non-organ threatening, generalized organ-threatening disease and severe kidney vasculitis and immediately life-threatening disease.
- In generalised non-organ-threatening disease, remission can be induced with methotrexate and steroids, where the steroid dose is reduced after a remission has been achieved and methotrexate used as maintenance.
- In case of organ-threatening disease, pulsed intravenous cyclophosphamide with steroids is recommended. Once remission has been achieved, azathioprine and steroids can be used to maintain remission.
- In severe kidney vasculitis, the same regimen is used but with the addition of plasma exchange.
- In pulmonary haemorrhage, high doses of cyclophosphamide with pulsed methylprednisolone may be used, or alternatively CYC, steroids, and plasma exchange.
Therapy for GPA and MPA has two main components: induction of remission with initial immunosuppressive therapy, and maintenance of remission with immunosuppressive therapy for a variable period to prevent relapse.
The mainstay of treatment for granulomatosis with polyangiitis (GPA) is a combination of corticosteroids and cytotoxic agents.
- Medications
- Side effect treatments
- Plasma exchange
- Kidney transplant
Treatment is targeted to the underlying cause. However, most vasculitis in general are treated with steroids (e.g. methylprednisolone) because the underlying cause of the vasculitis is due to hyperactive immunological damage. Immunosuppressants such as cyclophosphamide and azathioprine may also be given.
A systematic review of antineutrophil cytoplasmic antibody (ANCA) positive vasculitis identified best treatments depending on whether the goal is to induce remission or maintenance and depending on severity of the vasculitis.
Interferon, in the form of interferon gamma-1b (Actimmune) is approved by the Food and Drug Administration for the prevention of infection in CGD. It has been shown to reduce infections in CGD patients by 70% and to decrease their severity. Although its exact mechanism is still not entirely understood, it has the ability to give CGD patients more immune function and therefore, greater ability to fight off infections. This therapy has been standard treatment for CGD for several years.
Visual prognosis is generally good with prompt diagnosis and aggressive immunomodulatory treatment. Inner ear symptoms usually respond to corticosteroid therapy within weeks to months; hearing usually recovers completely. Chronic eye effects such as cataracts, glaucoma, and optic atrophy can occur. Skin changes usually persist despite therapy.
Treatment consists of paring down the bulk of the tissue with a sharp instrument or carbon dioxide laser and allowing the area to re-epithelialise. Sometimes, the tissue is completely excised and the raw area skin-grafted.
Uveitis is typically treated with glucocorticoid steroids, either as topical eye drops (prednisolone acetate) or as oral therapy. Prior to the administration of corticosteroids, corneal ulcers must be ruled out. This is typically done using a fluoresence dye test. In addition to corticosteroids, topical cycloplegics, such as atropine or homatropine, may be used. Successful treatment of active uveitis increases T-regulatory cells in the eye, which likely contributes to disease regression.
In some cases an injection of posterior subtenon triamcinolone acetate may also be given to reduce the swelling of the eye.
Antimetabolite medications, such as methotrexate are often used for recalcitrant or more aggressive cases of uveitis. Experimental treatments with Infliximab or other anti-TNF infusions may prove helpful.
The anti-diabetic drug metformin is reported to inhibit the process that causes the inflammation in uveitis.
In the case of herpetic uveitis, anti-viral medications, such as valaciclovir or aciclovir, may be administered to treat the causative viral infection.
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
Improvement or stabilization of the condition has been reported with topical and intralesional corticosteroids, antibiotics, hydroxychloroquine, topical and oral immunomodulators, tacrolimus, and most recently, 5-alpha-reductase inhibitors. In one study, the use of anti-androgens (finasteride or dutasteride) was associated with improvement in 47% and stabilization in 53% of patients
Even with treatment, the condition is often fatal, and there are very few recorded survivors, almost all of whom suffered permanent neurocognitive deficits. Antifungal drugs including ketoconazole, miconazole, 5-flucytosine and pentamidine have been shown to be effective against GAE-causing organisms in laboratory tests.
In one case, cloxacillin, ceftriaxone, and amphotericin B were tried.
Two patients survived after being successfully treated with a therapy consisting of flucytosine, pentamidine, fluconazole, sulfadiazine and azithromycin. Thioridazine was also given. Successful treatment in these cases was credited to "awareness of "Balamuthia" as the causative agent of encephalitis and early initiation of antimicrobial therapy."
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.
The affected areas are treated with iodine solutions. A common method to achieve this is to give the cattle sodium iodide orally on a regular treatment schedule. Antibiotics such as Tetracyclines are also used. These two treatment methods can be used alone or together; simultaneous use is considered more aggressive. Killing the bacteria that cause the infection is the ultimately purpose of these treatment methods. However, they are seldom effective unless treatment is started very early.
It is notable that surgery is not typically considered for treatment of cattle as it is in extreme human cases.
Treatment for fungal sinusitis can include surgical debridement; helps by slowing progression of disease thus allowing time for recovery additionally we see the options below:
- In the case of invasive fungal sinusitis, echinocandins, voriconazole, and amphoterecin (via IV) may be used
- For allergic fungal sinusitis, systemic corticosteroids like prednisolone, methylprednisolone are added for their anti-inflammatory effect, bronchodilators and expectorants help to clear secretions in the sinuses.
It is not lethal in nature and is responsive to tetracycline or ciprofloxacin. Surgical treatment include rhinoplasty. However, if left untreated the disease can lead to sepsis, bleeding, or other chronic conditions that can be fatal.
The prognosis is generally good for those who receive prompt diagnosis and treatment, but serious complication including cataracts, glaucoma, band keratopathy, macular edema and permanent vision loss may result if left untreated. The type of uveitis, as well as its severity, duration, and responsiveness to treatment or any associated illnesses, all factor into the outlook.
Oral antibiotics of the tetracycline class such as minocycline, doxycycline, and tetracycline have been recommended for CGPD. However, their use is limited by side effects such as nausea, vomiting, and sensitivity of the skin to sunlight. Tetracycline antibiotics are not recommended for children under the age of 8 since tetracyclines are known to deposit in teeth (thereby staining them) and impair bone growth in children. The use of calcineurin inhibitor creams such as tacrolimus or pimecrolimus on the skin is controversial and results have been mixed. Certain studies have found the use of topical calcineurin inhibitors led to resolution of CGPD whereas others found incomplete resolution or prolonged symptoms. Topical azelaic acid has also been used successfully to treat CGPD.