Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptomatic bacteriuria is typically treated as a urinary tract infection with antibiotics. Common choices include nitrofurantoin, and trimethoprim/sulfamethoxazole.
Asymptomatic bacteriuria generally does not require treatment. Exceptions include during pregnancy and in those undergoing surgery of the urinary tract. Children with vesicoureteral reflux or others with structural abnormalities of the urinary tract.
There is no indication to treat asymptomatic bacteriuria in diabetics, renal transplant recipients, and in those with spinal cord injuries.
The overuse of antibiotic therapy to treat asymptomatic bacteriuria increases the risk of diarrhea, antimicrobial resistance, and infection due to Clostridium difficile. Other effects include increased financial burdens and overreporting of mandated catheter-associated urinary tract infection.
Antibiotic therapy has to overcome the blood/prostate barrier that prevents many antibiotics from reaching levels that are higher than minimum inhibitory concentration. A blood-prostate barrier restricts cell and molecular movement across the rat ventral prostate epithelium. Treatment requires prolonged courses (4–8 weeks) of antibiotics that penetrate the prostate well. The fluoroquinolones, tetracyclines and macrolides have the best penetration. There have been contradictory findings regarding the penetrability of nitrofurantoin , quinolones (ciprofloxacin, levofloxacin), sulfas (Bactrim, Septra), doxycycline and macrolides (erythromycin, clarithromycin). This is particularly true for gram-positive infections.
In a review of multiple studies, Levofloxacin (Levaquin) was found to reach prostatic fluid concentrations 5.5 times higher than Ciprofloxacin, indicating a greater ability to penetrate the prostate.
Persistent infections may be helped in 80% of patients by the use of alpha blockers (tamsulosin (Flomax), alfuzosin), or long term low dose antibiotic therapy. Recurrent infections may be caused by inefficient urination (benign prostatic hypertrophy, neurogenic bladder), prostatic stones or a structural abnormality that acts as a reservoir for infection.
In theory, the ability of some strains of bacteria to form biofilms might be one factor amongst others to facilitate development of chronic bacterial prostatitis.
Escherichia coli extract and cranberry have a potentially preventive effect on the development of chronic bacterial prostatitis, while combining antibiotics with saw palmetto, lactobacillus sporogens and arbutin may lead to better treatment outcomes.
Bacteriophages hold promise as another potential treatment for chronic bacterial prostatatis.
The addition of prostate massage to courses of antibiotics was previously proposed as being beneficial and prostate massage may mechanically break up the biofilm and enhance the drainage of the prostate gland. However, in more recent trials, this was not shown to improve outcome compared to antibiotics alone.
Cefotaxim s DOC. After confirmation of SBP, patients need hospital admission for intravenous antibiotics. They will often also receive intravenous albumin. A repeat paracentesis in 48 hours is sometimes performed to ensure control of infection. Once patients have recovered from SBP, they require regular prophylactic antibiotics as long as they still have ascites.
The addition of a prokinetic drug to an antibiotic regime reduces the incidence of spontaneous bacterial peritonitis possibly via decreasing small intestinal bacterial overgrowth.
Over time, the relapse rate is high, exceeding 50%. However, recent research indicates that combination therapies offer a better prognosis than antibiotics alone.
A 2007 study showed that repeated combination pharmacological therapy with antibacterial agents (ciprofloxacin/azithromycin), alpha-blockers (alfuzosin) and Serenoa repens extracts may eradicate infection in 83.9% of patients with clinical remission extending throughout a follow-up period of 30 months for 94% of these patients.
A 2014 study of 210 patients randomized into two treatment groups found that recurrence occurred within 2 months in 27.6% of the group using antibiotics alone (prulifloxacin 600 mg), but in only 7.8% of the group taking prulifloxacin in combination with Serenoa repens extract, Lactobacillus Sporogens and Arbutin.
The treatment of gram negative bacteremia is also highly dependent on the causative organism. Empiric antibiotic therapy should be guided by the most likely source of infection and the patient's past exposure to healthcare facilities. In particular, a recent history of exposure to a healthcare setting may necessitate the need for antibiotics with "pseudomonas aeruginosa" coverage or broader coverage for resistant organisms. Extended generation cephalosporins such as ceftriaxone or beta lactam/beta lactam inhibitor antibiotics such as piperacillin-tazobactam are frequently used for the treatment of gram negative bacteremia.
The Infectious Disease Society of America (IDSA) recommends treating uncomplicated methicillin resistant staph aureus (MRSA) bacteremia with a 14-day course of intravenous vancomycin. Uncomplicated bacteremia is defined as having positive blood cultures for MRSA, but having no evidence of endocarditis, no implanted prostheses, negative blood cultures after 2–4 days of treatment, and signs of clinical improvement after 72 hrs.
The antibiotic treatment of choice for streptococcal and enteroccal infections differs by species. However, it is important to look at the antibiotic resistance pattern for each species from the blood culture to better treat infections caused by resistant organisms.
Two sets of blood cultures (aerobic and anaerobic) should be taken without delaying the initiation of antibitoics. Cultures from other sites such as respiratory secretions, urine, wounds, cerebrospinal fluid, and catheter insertion sites (in-situ more than 48 hours) can be taken if infections from these sites are suspected. In severe sepsis and septic shock, broad-spectrum antibiotics (usually two, a β-lactam antibiotic with broad coverage, or broad-spectrum carbapenem combined with fluoroquinolones, macrolides, or aminoglycosides) are recommended. However, combination of antibiotics is not recommended for the treatment of sepsis but without shock and immuno-compromised persons unless the combination is used to broaden the anti-bacterial activity. The choice of antibiotics is important in determining the survival of the person. Some recommend they be given within one hour of making the diagnosis, stating that for every hour of delay in the administration of antibiotics, there is an associated 6% rise in mortality. Others did not find a benefit with early administration.
Several factors determine the most appropriate choice for the initial antibiotic regimen. These factors include local patterns of bacterial sensitivity to antibiotics, whether the infection is thought to be a hospital or community-acquired infection, and which organ systems are thought to be infected. Antibiotic regimens should be reassessed daily and narrowed if appropriate. Treatment duration is typically 7–10 days with the type of antibiotic used directed by the results of cultures. In case the culture result is negative, antibiotics should be de-escalated according to person's clinical response or stopped altogether if infection is not present to decrease the chances that the person is infected with multiple drug resistance organisms. In case of people having high risk of being infected with multiple drug resistance organisms such as "Pseudomonas aeruginosa", "Acinetobacter baumannii", addition of antibiotic specific to gram-negative organism is recommended. For Methicillin-resistant Staphylococcus aureus (MRSA), vancomycin and teicoplanin is recommanded. For Legionella infection, addition of macrolide or fluoroquinolone is chosen. If fungal infection is suspected, echinocandin (caspofungin and micafungin) is chosen for people with severe sepsis, followed by triazole (fluconazole and itraconazole) for less ill people. Prolonged antibiotic prophylaxis is not recommended in people who has SIRS without any infectious origion such as acute pancreatitis and burns unless sepsis is suspected.
Once daily dosing of aminoglycoside is sufficient to achieve peak plasma concentration for clinical response without kidney toxicity. Meanwhile, for antibiotics with low volume distribution (vancomycin, teicoplanin, colistin), loading dose is required to achieve adequate therapeutic level to fight infections. Frequent infusions of beta-lactam antibiotics without exceeding total daily dose would help to keep the antibiotics level above minimum inhibitory concentration (MIC), thus providing better clinical response. Giving beta-lactam antibiotics continuously may be better than giving them intermittently. Access to therapeutic drug monitoring is important to ensure adequate drug therapeutic level while at the same time preventing the drug from reaching toxic level.
If the person has been sufficiently fluid resuscitated but the mean arterial pressure is not greater than 65 mmHg, vasopressors are recommended. Norepinephrine (noradrenaline) is recommended as the initial choice. If a single vasopressor is not enough to raise the blood pressure, epinephrine (adrenaline) or vasopressin may be added. Dopamine is typically not recommended. Dobutamine may be used if heart function is poor or blood flow is insufficient despite sufficient fluid volumes and blood pressure.
Depending on the severity of the patient's state, the management of peritonitis may include:
- General supportive measures such as vigorous intravenous rehydration and correction of electrolyte disturbances.
- Antibiotics are usually administered intravenously, but they may also be infused directly into the peritoneum. The empiric choice of broad-spectrum antibiotics often consist of multiple drugs, and should be targeted against the most likely agents, depending on the cause of peritonitis (see above); once one or more agents are actually isolated, therapy will of course be target on them.
- Gram positive and gram negative organisms must be covered. Out of the cephalosporins, cefoxitin and cefotetan can be used to cover gram positive bacteria, gram negative bacteria, and anaerobic bacteria. Beta-lactams with beta lactamase inhibitors can also be used, examples include ampicillin/sulbactam, piperacillin/tazobactam, and ticarcillin/clavulanate. Carbapenems are also an option when treating primary peritonitis as all of the carbapenems cover gram positives, gram negatives, and anaerobes except for ertapenem. The only fluoroquinolone that can be used is moxifloxacin because this is the only fluoroquinolone that covers anaerobes. Finally, tigecycline is a tetracycline that can be used due to its coverage of gram positives and gram negatives. Empiric therapy will often require multiple drugs from different classes.
- Surgery (laparotomy) is needed to perform a full exploration and lavage of the peritoneum, as well as to correct any gross anatomical damage that may have caused peritonitis. The exception is spontaneous bacterial peritonitis, which does not always benefit from surgery and may be treated with antibiotics in the first instance.
Recovery from an anaerobic infection depends on adequate and rapid management. The main principles of managing anaerobic infections are neutralizing the toxins produced by anaerobic bacteria, preventing the local proliferation of these organisms by altering the environment and preventing their dissemination and spread to healthy tissues.
Toxin can be neutralized by specific antitoxins, mainly in infections caused by Clostridia (tetanus and botulism). Controlling the environment can be attained by draining the pus, surgical debriding of necrotic tissue, improving blood circulation, alleviating any obstruction and by improving tissue oxygenation. Therapy with hyperbaric oxygen (HBO) may also be useful. The main goal of antimicrobials is in restricting the local and systemic spread of the microorganisms.
The available parenteral antimicrobials for most infections are metronidazole, clindamycin, chloramphenicol, cefoxitin, a penicillin (i.e. ticarcillin, ampicillin, piperacillin) and a beta-lactamase inhibitor (i.e. clavulanic acid, sulbactam, tazobactam), and a carbapenem (imipenem, meropenem, doripenem, ertapenem). An antimicrobial effective against Gram-negative enteric bacilli (i.e. aminoglycoside) or an anti-pseudomonal cephalosporin (i.e. cefepime ) are generally added to metronidazole, and occasionally cefoxitin when treating intra-abdominal infections to provide coverage for these organisms. Clindamycin should not be used as a single agent as empiric therapy for abdominal infections. Penicillin can be added to metronidazole in treating of intracranial, pulmonary and dental infections to provide coverage against microaerophilic streptococci, and Actinomyces.
Oral agents adequate for polymicrobial oral infections include the combinations of amoxicillin plus clavulanate, clindamycin and metronidazole plus a macrolide. Penicillin can be added to metronidazole in the treating dental and intracranial infections to cover "Actinomyces" spp., microaerophilic streptococci, and "Arachnia" spp. A macrolide can be added to metronidazole in treating upper respiratory infections to cover "S. aureus" and aerobic streptococci. Penicillin can be added to clindamycin to supplement its coverage against "Peptostreptococcus" spp. and other Gram-positive anaerobic organisms.
Doxycycline is added to most regimens in the treatment of pelvic infections to cover chlamydia and mycoplasma. Penicillin is effective for bacteremia caused by non-beta lactamase producing bacteria. However, other agents should be used for the therapy of bacteremia caused by beta-lactamase producing bacteria.
Because the length of therapy for anaerobic infections is generally longer than for infections due to aerobic and facultative anaerobic bacteria, oral therapy is often substituted for parenteral treatment. The agents available for oral therapy are limited and include amoxacillin plus clavulanate, clindamycin, chloramphenicol and metronidazole.
In 2010 the American Surgical Society and American Society of Infectious Diseases have updated their guidelines for the treatment of abdominal infections.
The recommendations suggest the following:
For mild-to-moderate community-acquired infections in adults, the agents recommended for empiric regimens are: ticarcillin- clavulanate, cefoxitin, ertapenem, moxifloxacin, or tigecycline as single-agent therapy or combinations of metronidazole with cefazolin, cefuroxime, ceftriaxone, cefotaxime, levofloxacin, or ciprofloxacin. Agents no longer recommended are: cefotetan and clindamycin ( Bacteroides fragilis group resistance) and ampicillin-sulbactam (E. coli resistance) and ainoglycosides (toxicity).
For high risk community-acquired infections in adults, the agents recommended for empiric regimens are: meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, ciprofloxacin or levofloxacin in combination with metronidazole, or ceftazidime or cefepime in combination with metronidazole. Quinolones should not be used unless hospital surveys indicate >90% susceptibility of "E. coli" to quinolones.
Aztreonam plus metronidazole is an alternative, but addition of an agent effective against gram-positive cocci is recommended. The routine use of an aminoglycoside or another second agent effective against gram-negative facultative and aerobic bacilli is not recommended in the absence of evidence that the infection is caused by resistant organisms that require such therapy.
Empiric use of agents effective against enterococci is recommended and agents effective against methicillin-resistant "S. aureus" (MRSA) or yeast is not recommended in the absence of evidence of infection due to such organisms.
Empiric antibiotic therapy for health care-associated intra-abdominal should be driven by local microbiologic results. Empiric coverage of likely pathogens may require multidrug regimens that include agents with expanded spectra of activity against gram-negative aerobic and facultative bacilli. These include meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, or ceftazidime or cefepime in combination with metronidazole. Aminoglycosides or colistin may be required.
Antimicrobial regimens for children include an aminoglycoside-based regimen, a carbapenem (imipenem, meropenem, or ertapenem), a beta-lactam/beta-lactamase-inhibitor combination (piperacillin-tazobactam or ticarcillin-clavulanate), or an advanced-generation cephalosporin (cefotaxime, ceftriaxone, ceftazidime, or cefepime) with metronidazole.
Clinical judgment, personal experience, safety and patient compliance should direct the physician in the choice of the appropriate antimicrobial agents. The length of therapy generally ranges between 2 and 4 weeks, but should be individualized depending on the response. In some instances treatment may be required for as long as 6–8 weeks, but can often be shortened with proper surgical drainage.
Treatment of CAP in children depends on the child's age and the severity of illness. Children under five are not usually treated for atypical bacteria. If hospitalization is not required, a seven-day course of amoxicillin is often prescribed, with co-trimaxazole an alternative when there is allergy to penicillins. Further studies are needed to confirm the efficacy of newer antibiotics. With the increase in drug-resistant Streptococcus pneumoniae, antibiotics such as cefpodoxime may become more popular. Hospitalized children receive intravenous ampicillin, ceftriaxone or cefotaxime, and a recent study found that a three-day course of antibiotics seems sufficient for most mild-to-moderate CAP in children.
Treatment consists of antibiotic therapy aimed at the typical bacterial pathogens in addition to supportive care for any complications which might result from the infection itself such as hypotension or respiratory failure. A typical regimen will include intravenous antibiotics such as from the penicillin-group which is active against "Staphylococcus aureus" and an aminoglycoside for activity against Gram-negative bacteria. For particularly invasive infections, antibiotics to cover anaerobic bacteria may be added (such as metronidazole). Treatment is typically for two weeks and often necessitates insertion of a central venous catheter or peripherally inserted central catheter.
CAP is treated with an antibiotic that kills the offending microorganism and by managing complications. If the causative microorganism is unidentified (often the case), the laboratory identifies the most-effective antibiotic; this may take several days.
Health professionals consider a person's risk factors for various organisms when choosing an initial antibiotic. Additional consideration is given to the treatment setting; most patients are cured by oral medication, while others must be hospitalized for intravenous therapy or intensive care.
Therapy for older children and adults generally includes treatment for atypical bacteria: typically a macrolide antibiotic (such as azithromycin or clarithromycin) or a quinolone, such as levofloxacin. Doxycycline is the antibiotic of choice in the UK for atypical bacteria, due to increased clostridium difficile colitis in hospital patients linked to the increased use of clarithromycin.
Antibiotics are the treatment of choice for bacterial pneumonia, with ventilation (oxygen supplement) as supportive therapy. The antibiotic choice depends on the nature of the pneumonia, the microorganisms most commonly causing pneumonia in the geographical region, and the immune status and underlying health of the individual. In the United Kingdom, amoxicillin is used as first-line therapy in the vast majority of patients acquiring pneumonia in the community, sometimes with added clarithromycin. In North America, where the "atypical" forms of community-acquired pneumonia are becoming more common, clarithromycin, azithromycin, or fluoroquinolones as single therapy have displaced the amoxicillin as first-line therapy.
Local patterns of antibiotic-resistance always need to be considered when initiating pharmacotherapy. In hospitalized individuals or those with immune deficiencies, local guidelines determine the selection of antibiotics.
Treatment is usually with intravenous antibiotics, analgesia and washout and/or aspiration of the joint. Draining the pus from the joint is important and can be done either by needle (arthrocentesis) or opening the joint surgically (arthrotomy).
Empiric antibiotics for suspected bacteria should be started. This should be based on gram stain of the synovial fluid as well as other clinical findings. General guidelines are as follows:
- Gram positive cocci - vancomycin
- Gram negative cocci - Ceftriaxone
- Gram negative bacilli - Ceftrioxone, cefotaxime, or ceftazidime
- Gram stain negative and immunocompetent - vancomycin
- Gram stain negative and immunocompromised - vancomycin + third generation cephalosphorin
- IV drug use (possible pseudomonas aeruginosa) - ceftazidime +/- an aminoglycoside
Once cultures are available, antibiotics can be changed to target the specific organism.
After a good response to intravenous antibiotics, patients can be switched to oral antibiotics. The duration of oral antibiotics varies, but is generally for 1-4 weeks depending on the offending organism.
In infection of a prosthetic joint, a biofilm is often created on the surface of the prosthesis which is resistant to antibiotics. Surgical debridement is usually indicated in these cases. A replacement prosthesis is usually not inserted at the time of removal to allow antibiotics to clear infection of the region. Patients that cannot have surgery may try long-term antibiotic therapy in order to suppress the infection.
Close follow up with physical exam & labs must be done to make sure patient is no longer feverish, pain has resolved, has improved range of motion, and lab values are normalized.
Immediate treatment is very important for someone with orbital cellulitis. Treatment typically involves intravenous (IV) antibiotics in the hospital and frequent observation (every 4–6 hours). Along with this several laboratory tests are run including a complete blood count, differential, and blood culture.
- Antibiotic therapy – Since orbital cellulitis is commonly caused by "Staphylococcus" and "Streptococcus" species both penicillins and cephalosporins are typically the best choices for IV antibiotics. However, due to the increasing rise of MRSA (methicillin-resistant "Staphylococcus aureus") orbital cellulitis can also be treated with Vancomycin, Clindamycin, or Doxycycline. If improvement is noted after 48 hours of IV antibiotics, healthcare professions can then consider switching a patient to oral antibiotics (which must be used for 2–3 weeks).
- Surgical intervention – An abscess can threaten the vision or neurological status of a patient with orbital cellulitis, therefore sometimes surgical intervention is necessary. Surgery typically requires drainage of the sinuses and if a subperiosteal abscess is present in the medial orbit, drainage can be performed endoscopically. Post-operatively, patients must follow up regularly with their surgeon and remain under close observation.
Although orbital cellulitis is considered an ophthalmic emergency the prognosis is good if prompt medical treatment is received.
"Actinomyces" bacteria are generally sensitive to penicillin, which is frequently used to treat actinomycosis. In cases of penicillin allergy, doxycycline is used.
Sulfonamides such as sulfamethoxazole may be used as an alternative regimen at a total daily dosage of 2-4 grams. Response to therapy is slow and may take months.
Hyperbaric oxygen therapy may also be used as an adjunct to conventional therapy when the disease process is refractory to antibiotics and surgical treatment.
Usually initial therapy is empirical. If sufficient reason to suspect influenza, one might consider oseltamivir. In case of legionellosis, erythromycin or fluoroquinolone.
A third generation cephalosporin (ceftazidime) + carbapenems (imipenem) + beta lactam & beta lactamase inhibitors (piperacillin/tazobactam)
There is no readily available evidence on the route of administration and duration of antibiotics in patients with pleural empyema. Experts agree that all patients should be hospitalized and treated with antibiotics intravenously. The specific antimicrobial agent should be chosen based on Gram stain and culture, or on local epidemiologic data when these are not available. Anaerobic coverage must be included in all adults, and in children if aspiration is likely. Good pleural fluid and empyema penetration has been reported in adults for penicillins, ceftriaxone, metronidazole, clindamycin, vancomycin, gentamycin and ciprofloxacin. Aminoglycosides should typically be avoided as they have poor penetration into the pleural space. There is no clear consensus on duration of intravenous and oral therapy. Switching to oral antibiotics can be considered upon clinical and objective improvement (adequate drainage and removal of chest tube, declining CRP, temperature normalization). Oral antibiotic treatment should then be continued for another 1–4 weeks, again based on clinical, biochemical and radiological response.
"Streptococcus pneumoniae" — amoxicillin (or erythromycin in patients allergic to penicillin); cefuroxime and erythromycin in severe cases.
"Staphylococcus aureus" — flucloxacillin (to counteract the organism's β-lactamase).
Products containing multivalent cations, such as aluminium- or magnesium-containing antacids, and products containing calcium, iron or zinc invariably result in marked reduction of oral absorption of fluoroquinolones. Other drugs that interact with fluoroquinolones include sucralfate, probenecid, cimetidine, theophylline, warfarin, antiviral agents, phenytoin, cyclosporine, rifampin, pyrazinamide, and cycloserine.
Administration of quinolone antibiotics to a benzodiazepine dependent individual can precipitate acute benzodiazepine withdrawal symptoms due to quinolones displacing benzodiazepines from their binding site.
Fluoroquinolones have varying specificity for cytochrome P450, and so may have interactions with drugs cleared by those enzymes; the order from most P450-inhibitory to least, is enoxacin > ciprofloxacin > norfloxacin > ofloxacin, levofloxacin, trovafloxacin, gatifloxacin, moxifloxacin.
The treatment of choice is penicillin, and the duration of treatment is around 10 days. Antibiotic therapy (using injected penicillin) has been shown to reduce the risk of acute rheumatic fever. In individuals with a penicillin allergy, erythromycin, other macrolides, and cephalosporins have been shown to be effective treatments.
Treatment with ampicillin/sulbactam, amoxicillin/clavulanic acid, or clindamycin is appropriate if deep oropharyngeal abscesses are present, in conjunction with aspiration or drainage. In cases of streptococcal toxic shock syndrome, treatment consists of penicillin and clindamycin, given with intravenous immunoglobulin.
For toxic shock syndrome and necrotizing fasciitis, high-dose penicillin and clindamycin are used. Additionally, for necrotizing fasciitis, surgery is often needed to remove damaged tissue and stop the spread of the infection.
No instance of penicillin resistance has been reported to date, although since 1985, many reports of penicillin tolerance have been made. The reason for the failure of penicillin to treat "S. pyogenes" is most commonly patient noncompliance, but in cases where patients have been compliant with their antibiotic regimen, and treatment failure still occurs, another course of antibiotic treatment with cephalosporins is common.