Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment of mild metal fume fever consists of bedrest, keeping the patient well hydrated, and symptomatic therapy (e.g. aspirin for headaches) as indicated. In the case of non-allergic acute lung injury, standard or recommended approaches to treatment have not been defined.
The consumption of large quantities of cow's milk, either before or immediately after exposure is a traditional remedy. However, the United Kingdom Health and Safety Executive challenges this advice, warning, "Don’t believe the stories about drinking milk before welding. It does not prevent you getting metal fume fever."
Prevention of metal fume fever in workers who are at risk (such as welders) involves avoidance of direct contact with potentially toxic fumes, improved engineering controls (exhaust ventilation systems), personal protective equipment (respirators), and education of workers regarding the features of the syndrome itself and proactive measures to prevent its development.
In some cases, the product's design may be changed so as to eliminate the use of risky metals. NiCd rechargeable batteries are being replaced by NiMH. These contain other toxic metals, such as chromium, vanadium and cerium. Cadmium is often replaced by other metals. Zinc or nickel plating can be used instead of cadmium plating, and brazing filler alloys now rarely contain cadmium.
The illness is generally self-limiting. Management on the whole is preventative, by limiting exposure to mouldy environments with ventilation, or by wearing respiratory protection such as facemasks.
The current medical treatments for aggressive invasive aspergillosis include voriconazole and liposomal amphotericin B in combination with surgical debridement.
For the less aggressive allergic bronchopulmonary aspergillosis findings suggest the use of oral steroids for a prolonged period of time, preferably for 6–9 months in allergic aspergillosis of the lungs. Itraconazole is given with the steroids, as it is considered to have a "steroid sparing" effect, causing the steroids to be more effective, allowing a lower dose.,
Other drugs used, such as amphotericin B, caspofungin (in combination therapy only), flucytosine (in combination therapy only), or itraconazole,
are used to treat this fungal infection. However, a growing proportion of infections are resistant to the triazoles. "A. fumigatus", the most commonly infecting species, is intrinsically resistant to fluconazole.
Prevention of aspergillosis involves a reduction of mold exposure via environmental infection-control. Anti-fungal prophylaxis can be given to high-risk patients. Posaconazole is often given as prophylaxis in severely immunocompromised patients.
Organic dust toxic syndrome (ODTS) is a potentially severe flu-like syndrome originally described in farmers, mushroom workers, bird breeders and other persons occupationally exposed to dusty conditions.
Prevention is by not smoking and avoiding other lung irritants. Frequent hand washing may also be protective. Treatment of acute bronchitis typically involves rest, paracetamol (acetaminophen), and NSAIDs to help with the fever. Cough medicine has little support for its use and is not recommended in children less than six years of age. There is tentative evidence that salbutamol may be useful in those with wheezing; however, it may result in nervousness and tremors. Antibiotics should generally not be used. An exception is when acute bronchitis is due to pertussis. Tentative evidence supports honey and pelargonium to help with symptoms. Getting plenty of rest and fluids is also often recommended.
The effect of mercury took some time – the latent period between ingestion and the first symptoms (typically paresthesia – numbness in the extremities) was between 16 and 38 days. Paresthesia was the predominant symptom in less serious cases. Worse cases included ataxia (typically loss of balance), blindness or reduced vision, and death resulting from central nervous system failure. Anywhere between 20 and 40 mg of mercury has been suggested as sufficient for paresthesia (between 0.5 and 0.8 mg/kg of body weight). On average, individuals affected consumed 20 kg or so of bread; the 73,000 tonnes provided would have been sufficient for over 3 million cases.
The hospital in Kirkuk received large numbers of patients with symptoms that doctors recognised from the 1960 outbreak. The first case of alkylmercury poisoning was admitted to hospital on 21 December. By 26 December, the hospital had issued a specific warning to the government. By January 1972, the government had started to strongly warn the populace about eating the grain, although dispatches did not mention the large numbers already ill. The Iraqi Army soon ordered disposal of the grain and eventually declared the death penalty for anyone found selling it. Farmers dumped their supplies wherever possible, and it soon got into the water supply (particularly the River Tigris), causing further problems. The government issued a news blackout and released little information about the outbreak.
The World Health Organization assisted the Iraqi government through the supply of drugs, analytical equipment and expertise. Many new treatments were tried, since existing methods for heavy metal poisoning were not particularly effective. Dimercaprol was administered to several patients, but caused rapid deterioration of their condition. It was ruled out as a treatment for this sort of poisoning following the outbreak. Polythiol resins, penicillamine and dimercaprol sulfonate all helped, but are believed to have been largely insignificant in overall recovery and outcomes. Dialysis was tested on a few patients late in the treatment period, but they showed no clinical improvement. The result of all treatments was varied, with some patients' blood mercury level being dramatically reduced, but a negligible effect in others. All patients received periods of treatment interspersed with lay periods; continuous treatment was suggested in future cases. Later treatment was less effective in reducing blood toxicity.
Evidence suggests that the decline in lung function observed in chronic bronchitis may be slowed with smoking cessation. Chronic bronchitis is treated symptomatically and may be treated in a nonpharmacologic manner or with pharmacologic therapeutic agents. Typical nonpharmacologic approaches to the management of COPD including bronchitis may include: pulmonary rehabilitation, lung volume reduction surgery, and lung transplantation. Inflammation and edema of the respiratory epithelium may be reduced with inhaled corticosteroids. Wheezing and shortness of breath can be treated by reducing bronchospasm (reversible narrowing of smaller bronchi due to constriction of the smooth muscle) with bronchodilators such as inhaled long acting β-adrenergic receptor agonists (e.g., salmeterol) and inhaled anticholinergics such as ipratropium bromide or tiotropium bromide. Mucolytics may have a small therapeutic effect on acute exacerbations of chronic bronchitis. Supplemental oxygen is used to treat hypoxemia (too little oxygen in the blood) and has been shown to reduce mortality in chronic bronchitis patients. Oxygen supplementation can result in decreased respiratory drive, leading to increased blood levels of carbon dioxide (hypercapnia) and subsequent respiratory acidosis.
Treatment of KBD is palliative. Surgical corrections have been made with success by Chinese and Russian orthopedists. By the end of 1992, Médecins Sans Frontières—Belgium started a physical therapy programme aiming at alleviating the symptoms of KBD patients with advanced joint impairment and pain (mainly adults), in Nyemo county, Lhasa prefecture. Physical therapy had significant effects on joint mobility and joint pain in KBD patients. Later on (1994–1996), the programme has been extended to several other counties and prefectures in Tibet.
"Actinomyces" bacteria are generally sensitive to penicillin, which is frequently used to treat actinomycosis. In cases of penicillin allergy, doxycycline is used.
Sulfonamides such as sulfamethoxazole may be used as an alternative regimen at a total daily dosage of 2-4 grams. Response to therapy is slow and may take months.
Hyperbaric oxygen therapy may also be used as an adjunct to conventional therapy when the disease process is refractory to antibiotics and surgical treatment.
Prevention of Kashin–Beck disease has a long history. Intervention strategies were mostly based on one of the three major theories of its cause.
Selenium supplementation, with or without additional antioxidant therapy (vitamin E and vitamin C) has been reported to be successful, but in other studies no significant decrease could be shown compared to a control group. Major drawbacks of selenium supplementation are logistic difficulties (daily or weekly intake, drug supply), potential toxicity (in case of less controlled supplementation strategies), associated iodine deficiency (that should be corrected before selenium supplementation to prevent further deterioration of thyroid status) and low compliance. The latter was certainly the case in Tibet, where a selenium supplementation has been implemented from 1987 to 1994 in areas of high endemicity.
With the mycotoxin theory in mind, backing of grains before storage was proposed in Guangxi province, but results are not reported in international literature. Changing from grain source has been reported to be effective in Heilongjiang province and North Korea.
With respect to the role of drinking water, changing of water sources to deep well water has been reported to decrease the X-ray metaphyseal detection rate in different settings.
In general, the effect of preventive measures however remains controversial, due to methodological problems (no randomised controlled trials), lack of documentation or, as discussed above, due to inconsistency of results.
Recommended strategies to prevent mold include: avoiding mold-contamination; utilization of environmental controls; the use of personal protective equipment (PPE) including skin and eye protection and respiratory protection; and environmental controls such as ventilation and suppression of dust. When mold cannot be prevented, the CDC recommends clean-up protocol including first taking emergency action to stop water intrusion. Second, they recommend determining the extent of water damage and mold contamination. And third, they recommend planning remediation activities such as establishing containment and protection for workers and occupants; eliminating water or moisture sources if possible; decontaminating or removing damaged materials and drying any wet materials; evaluating whether the space has been successfully remediated; and reassembling the space to control sources of moisture.
Symptoms of mold exposure can include:
- Nasal and sinus congestion, runny nose
- Respiratory problems, such as wheezing and difficulty breathing, chest tightness
- Cough
- Throat irritation
- Sneezing / Sneezing fits
Thunderstorm asthma is the triggering of an asthma attack by environmental conditions directly caused by a local thunderstorm. It has been proposed that during a thunderstorm, pollen grains can absorb moisture and then burst into much smaller fragments with these fragments being easily dispersed by wind. However, there is no experimental evidence confirming this theory. While larger pollen grains are usually filtered by hairs in the nose, the smaller pollen fragments are able to pass through and enter the lungs, triggering the asthma attack.
There have been events where thunderstorms have caused asthma attacks across cities such that emergency services and hospitals have been overwhelmed. The phenomenon was first recognised and studied after three recorded events in the 1980s; in Birmingham, England, in 1983 and in Melbourne, Australia in 1987 and 1989. Since then there have been further reports of widespread thunderstorm asthma in Wagga Wagga, Australia; London, England; Naples, Italy; Atlanta, United States; and Ahvaz, Iran. A further outbreak in Melbourne, in November 2016, that overwhelmed the ambulance system and some local hospitals, resulted in at least nine deaths. There was a similar incident in Kuwait in early December, 2016 with at least 5 deaths and many admissions to the ICU.
Many of those affected during a thunderstorm asthma outbreak may have never experienced an asthma attack before.
It has been found 95% of those that were affected by thunderstorm asthma had a history of hayfever, and 96% of those people had tested positive to grass pollen allergies, particularly rye grass. A rye grass pollen grain can hold up to 700 tiny starch granules, measuring 0.6 to 2.5 μm, small enough to reach the lower airways in the lung.
As with any supplements and drugs, it is best to confer with a veterinarian as to the recommended dosages. Some drugs are not allowed in competition and may need to be withheld a few days before.
Adding potassium and salt to the diet may be beneficial to horses that suffer from recurrent bouts of ER. Horses in hard training may need a vitamin E supplement, as their requirements are higher than horses in more moderate work. The horse may also be deficient in selenium, and need a feed in supplement. Selenium can be dangerous if overfed, so it is best to have a blood test to confirm that the horse is in need of supplemental selenium.
Thyroid hormone supplementation is often beneficial for horses with low thyroid activity (only do so if the horse has been diagnosed with hypothyroidism).
Other drugs that have been used with success include phenytoin, dantrolene, and dimetyl glycine.
Bicarbonate and NSAIDs are of no use in preventing ER.
Removal of ergot bodies is done by placing the yield in a brine solution; the ergot bodies float while the healthy grains sink. Infested fields need to be deep plowed; ergot cannot germinate if buried more than one inch in soil and therefore won't release its spores into the air. Rotating crops using non-susceptible plants helps reduce infestations since ergot spores only live one year. Crop rotation and deep tillage, such as deep moldboard ploughing, are important components in managing ergot, as many cereal crops in the 21st Century are sown with a "no-till" practice (new crops are seeded directly into the stubble from the previous crop to reduce soil erosion). Wild and escaped grasses and pastures can be mowed before they flower to help limit the spread of ergot.
Chemical controls can also be used, but are not considered economical especially in commercial operations, and germination of ergot spores can still occur under favorable conditions even with the use of such controls.
There is currently no specific therapy. Intravenous fluids and treatment of the hepatic encephalopathy may help. Increasing dietary levels of branched chain amino acids and feeding low protein diets can help signs of hepatic encephalopathy, which is often accomplished by feeding small amounts of grain and/or beet pulp, and removing high-protein feedstuffs such as alfalfa hay. Grazing on non-legume grass may be acceptable if it is late summer or fall, although the horse should only be permitted to eat in the evening so as to avoid photosensitization. Due to the risk of gastric impaction, stomach size should be monitored.
Sedation is minimized and used only to control behavior that could lead to injury of the animal and to allow therapeutic procedures, and should preferably involve a sedative other than a benzodiazepine. Stressing the animal should be avoided if at all possible. Plasma transfusions may be needed if spontaneous bleeding occurs, to replace clotting factors. Antibiotics are sometimes prescribed to prevent bacterial translocation from the intestines. Antioxidants such as vitamin E, B-complex vitamins, and acetylcysteine may be given. High blood ammonia is often treated with oral neomycin, often in conjunction with lactulose, metronidazole and probiotics, to decrease production and absorption of ammonia from the gastrointestinal tract.
Recent research suggests that sulfur amino acids have a protective effect against the toxicity of ODAP.
Eating the chickling pea with grain having high concentrations of sulphur-based amino acids reduces the risk of lathyrism if grain is available. Food preparation is also an important factor. Toxic amino acids are readily soluble in water and can be leached. Bacterial (lactic acid) and fungal (tempeh) fermentation is useful to reduce ODAP content. Moist heat (boiling, steaming) denatures protease inhibitors which otherwise add to the toxic effect of raw grasspea through depletion of protective sulfur amino acids. During times of drought and famine, water for steeping and fuel for boiling is frequently also in short supply. Poor people sometimes know how to reduce the chance of developing lathyrism but face a choice between risking lathyrism or starvation.
The underlying cause for excessive consumption of grasspea is a lack of alternative food sources. This is a consequence of poverty and political conflict. The prevention of lathyrism is therefore a socio-economic challenge.
After the material has passed, a veterinarian may try to prevent the onset of aspiration pneumonia by placing the horse on broad-spectrum antibiotics. The animal should be monitored for several days to ensure that it does not develop pneumonia, caused by inhalation of bacteria-rich food material into the lungs.
The material caught in a horse's throat usually causes inflammation, which may later lead to scarring. Scarring reduces the diameter of the esophagus (a stenosis or stricture), which increases the chance that the horse may choke again. The veterinarian may therefore place the horse on a course of NSAIDs, to help to control the inflammation of the esophagus.
Often the horse will only be fed softened food for a few days, allowing the esophagus to heal, before it is allowed to gradually resume its normal diet (e.g. hay and unsoaked grain). Horses with re-occurring chokes may require their diet to be changed.
Proper conditioning is very important in preventing ER. Beginning with a base of long, slow distance work will ensure that the horse has a foundation before proceeding on to more strenuous work. The horse should always have a 10-minute warm-up at the walk and trot before more strenuous work is begun, and should always have a proper cool down of 10 minutes.
It is best that a horse receive exercise every day, or possibly twice a day, to prevent the recurrence of ER. If possible, avoid breaks in the horse's exercise schedule. Training, riding, driving, longeing, or turnout are all suitable.
Daily pasture turnout is ideal for horses likely to suffer from ER, as it provides exercise and adds roughage to the animal's diet.
Canakinumab has been approved for treatment of HIDS and has shown to be effective. The immunosuppressant drugs etanercept and anakinra have also shown to be effective. Statin drugs might decrease the level of mevalonate and are presently being investigated. A recent single case report highlighted bisphosphonates as a potential therapeutic option.
Some of grain (73,201 tonnes of wheat grain and 22,262 tonnes of barley), coloured a pink-orange hue, were shipped to Iraq from the United States and Mexico. The wheat arrived in Basra on SS "Trade Carrier" between 16 September and 15 October, barley between 22 October and 24 November 1971. Iraq's government chose Mexipak, a high-yield wheat seed developed in Mexico by Norman Borlaug. The seeds contained an average of 7.9 μg/g of mercury, with some samples containing up to nearly twice that. The decision to use mercury-coated grain has been reported as made by the Iraqi government, rather than the supplier, Cargill. The three Northern governorates of Ninawa, Kirkuk and Erbil together received more than half the shipments. Contributing factors to the epidemic included the fact that distribution started late, and much grain arrived after the October–November planting season.
Farmers holding grain ingested it instead, since their own planting had been completed. Distribution was hurried and open, with grain being distributed free of charge or with payment in kind. Some farmers sold their own grain lest this new grain devalue what they had. This left them dependent on tainted grain for the winter. Many Iraqis were either unaware of the significant health risk posed, or chose to ignore the warnings. Initially, farmers were to certify with a thumbprint or signature that they understood the grain was poison, but according to some sources, distributors did not ask for such an indication. Warnings on the sacks were in Spanish and English, not at all understood, or included the black-and-white skull and crossbones design, which meant nothing to Iraqis. The long latent period may have granted farmers a false sense of security, when animals fed the grain appeared to be fine. The red dye washed off the grain; the mercury did not. Hence, washing may have given only the appearance of removing the poison.
Mercury was ingested through the consumption of homemade bread, meat and other animal products obtained from livestock given treated barley, vegetation grown from soil contaminated with mercury, game birds that had fed on the grain and fish caught in rivers, canals, and lakes into which treated grain had been dumped by the farmers. Ground seed dust inhalation was a contributing factor in farmers during sowing and grinding. Consumption of ground flour through homemade bread is thought to have been the major cause, since no cases were reported in urban areas, where government flour supplies were commercially regulated.
Choking horses should be deprived of food and drink pending veterinary attention, so as not to increase the obstructive load within the esophagus. The veterinarian will often sedate the horse and administer spasmolytics, such as butylscopolamine, to help the esophagus to relax. Once the muscles of the esophagus no longer force the food down the throat (active peristalsis), it may slip down on its own accord. If spasmolytics do not solve the problem, the veterinarian will usually pass a stomach tube through one of the nostrils and direct it into the esophagus until the material is reached, at which point "gentle" pressure is applied to manually push the material down. Gentle warm water lavage (water sent through the stomach tube, to soften the food material) may be required to help the obstructing matter pass more easily, but caution should be exercised to prevent further aspiration of fluid into the trachea.
Refractory cases are sometimes anesthetised, with an orotracheal tube placed to prevent further aspiration and to allow for more vigorous lavage. Disruption of the impacted material can sometimes be achieved via endoscopy. If these methods still do not lead to results, the horse may require surgery to remove the material.
Some workers have advocated the use of oxytocin in choke, on the grounds that it decreases the esophageal muscular tone. However, this technique is not suitable in pregnant mares, as it may lead to abortion.
Five interventional strategies can be used:
- Adding zinc to soil, called agronomic biofortification, which both increases crop yields and provides more dietary zinc.
- Adding zinc to food, called fortification.
- Adding zinc rich foods to diet. The foods with the highest concentration of zinc are proteins, especially animal meats, the highest being oysters. Per ounce, beef, pork, and lamb contain more zinc than fish. The dark meat of a chicken has more zinc than the light meat. Other good sources of zinc are nuts, whole grains, legumes, and yeast. Although whole grains and cereals are high in zinc, they also contain chelating phytates which bind zinc and reduce its bioavailability.
- Oral repletion via tablets (e.g. zinc gluconate) or liquid (e.g. zinc acetate). Oral zinc supplementation in healthy infants more than six months old has been shown to reduce the duration of any subsequent diarrheal episodes by about 11 hours.
- Oral repletion via multivitamin/mineral supplements containing zinc gluconate, sulfate, or acetate. It is not clear whether one form is better than another. Zinc is also found in some cold lozenges, nasal sprays, and nasal gels.