Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Clomifene citrate (or clomid) is the medication which is most commonly used to treat anovulation. It is a selective estrogen-receptor modulator, affecting the hypothalamic–pituitary–gonadal axis to respond as if there was an estrogen deficit in the body, in effect increasing the production of gonadotrophins. It is relatively easy and convenient to use. Clomifene appears to inhibit estrogen receptors in hypothalamus, thereby inhibiting negative feedback of estrogen on gonadotrophin production. It may also result in direct stimulation of the hypothalamic-pituitary axis. It also has an effect on cervical mucus quality and uterine mucosa, which might affect sperm penetration and survival, hence its early administration during the menstrual cycle. Clomifene citrate is a very efficient ovulation inductor, and has a success rate of 67%. Nevertheless, it only has a 37% success rate in inducing pregnancy. This difference may be due to the anti-estrogenic effect which clomifene citrate has on the endometrium, cervical mucus, uterine blood flow, as well as the resulting decrease in the motility of the fallopian tubes and the maturation of the oocytes.
The standard dosage for first-time takers is 50 or 100 mg of clomifene per day for five consecutive days, starting early in the menstrual cycle, usually on the third to fifth day counting from the beginning of the menstrual period. In case of amenorrhea, a period can be induced by intake of an oral progestin for 10 days. In absence of success, the dosage can be increased in subsequent cycles with increments of 50 mg. However, at a dosage of 200 mg, further increments are unlikely to increase pregnancy chances.
The gonadotropin-releasing hormone (GnRH) pump is used to release doses of GnRH in a pulsatile fashion. This hormone is synthesised by the hypothalamus and induces the secretion of LH and FSH by the pituitary. GnRH must be delivered in a pulsatile fashion to imitate the random secretion of the hypothalamus in order to fool the pituitary into secreting LH and FSH. The GnRH pump is the size of a cigarette box and has a small catheter. Unlike other treatments, using the GnRH pump doesn’t usually lead to multiple pregnancies. Filicori from the University of Bologna suggests that this might be because gonadotrophins are absent when the treatment is initiated, and therefore the hormones released by the pituitary (LH and FSH) can still take part in the retro-control of gonadotrophin secretion, mimicking the natural cycle. This treatment can also be used for underweight and/or anorexic patients; it has also been used in certain cases of hyperprolactimenia.
Tamoxifen affects estrogen receptors in a similar fashion as clomifene citrate. It is often used in the prevention and treatment of breast cancer. It can therefore also be used to treat patients that have a reaction to clomifene citrate.
Bromocriptine acts in a completely different manner to the other treatments mentioned above. It does not induce ovulation, but reduces the production of prolactin by the pituitary. Bromocriptine is only prescribed in cases of overproduction of prolactin (hyperprolactinemia).
Corticosteroids (usually found in anti-inflammatory drugs) can be used to treat anovulation if it is caused by an overproduction of male hormones by the adrenal glands. Corticosteroids are usually used to reduce the production of testosterone.
Several studies indicate that in some cases, a simple "change in lifestyle" could help patients suffering from anovulation. Consulting a nutritionist, for example, could help a young woman suffering from anorexia to put on some weight, which might restart her menstrual cycle. Conversely, a young overweight woman who manages to lose weight could also relieve the problem of anovulation (losing just 5% of body mass could be enough to restart ovulation). However, it is widely acknowledged by doctors that it is usually very difficult for PCOS patients to lose weight.
Previously, metformin was recommended as treatment for anovulation in polycystic ovary syndrome, but in the largest trial to date, comparing clomiphene with metformin, clomiphene was more effective than metformin alone. Following this study, the ESHRE/ASRM-sponsored Consensus workshop do not recommend metformin for ovulation stimulation. Subsequent randomized studies have confirmed the lack of evidence for adding metformin to clomiphene.
Treatment of hyperandrogenism varies with the underlying condition that causes it. As a hormonal symptom of polycystic ovary syndrome, menopause, and other endocrine disorders, it is primarily treated as a symptom of these disorders. Systemically, it is treated with antiandrogens such as cyproterone acetate, flutamide and spironolactone to control the androgen levels in the patient's body. For Hyperandrogenism caused by Late-Onset Congenital Adrenal Hyperplasia (CAH), treatment is primarily focused on providing the patient with Glucocorticoids to combat the low cortisol production and the corresponding increase in androgens caused by the swelling of the Adrenal Glands. Oestrogen-based oral contraceptives are used to treat both CAH and PCOS caused hyperandrogenism. These hormonal treatments have been found to reduce the androgen excess and suppress adrenal androgen production and cause a significant decrease in hirsutism.
Hyperandrogenism is often managed symptomatically. Hirsutism and acne both respond well to the hormonal treatments described above, with 60-100% reporting an improvement in hirsutism. Androgenic alopecia however, does not show a significant improvement with hormonal treatments and requires other treatments, such as hair transplantation.
Physicians can reduce the risk of OHSS by monitoring of FSH therapy to use this medication judiciously, and by withholding hCG medication.
Cabergoline confers a significant reduction in the risk of OHSS in high risk women according to a Cochrane review of randomized studies, but the included trials did not report the live birth rates or multiple pregnancy rates. Cabergoline, as well as other dopamine agonists, might reduce the severity of OHSS by interfering with the VEGF system. A systematic review and meta-analysis concluded that prophylactic treatment with cabergoline reduces the incidence, but not the severity of OHSS, without compromising pregnancy outcomes.
The risk of OHSS is smaller when using GnRH antagonist protocol instead of GnRH agonist protocol for suppression of ovulation during ovarian hyperstimulation. The underlying mechanism is that, with the GnRH antagonist protocol, initial follicular recruitment and selection is undertaken by endogenous endocrine factors prior to starting the exogenous hyperstimulation, resulting in a smaller number of growing follicles when compared with the standard long GnRH agonist protocol.
A Cochrane review found administration of hydroxyethyl starch decreases the incidence of severe OHSS. There was insufficient evidence to support routine cryopreservation and insufficient evidence for the relative merits of intravenous albumin versus cryopreservation. Also, "coasting", which is ovarian hyperstimulation without induction of final maturation, does not significantly decrease the risk of OHSS.
Treatments vary based on the underlying condition. Key issues are problems of surgical correction if appropriate and oestrogen therapy if oestrogen levels are low. For those who do not plan to have biological children, treatment may be unnecessary if the underlying cause of the amenorrhoea is not threatening to their health. However, in the case of athletic amenorrhoea, deficiencies in estrogen and leptin often simultaneously result in bone loss, potentially leading to osteoporosis.
"Athletic" amenorrhoea which is part of the female athlete triad is treated by eating more and decreasing the amount and intensity of exercise. If the underlying cause is the athlete triad then a multidisciplinary treatment including monitoring from a physician, dietitian, and mental health counselor is recommended, along with support from family, friends, and coaches. Although oral contraceptives can causes menses to return, oral contraceptives should not be the initial treatment as they can mask the underlying problem and allow other effects of the eating disorder, like osteoporosis, continue to develop. Weight recovery, or increased rest does not always catalyze the return of a menses. Recommencement of ovulation suggests a dependency on a whole network of neurotransmitters and hormones, altered in response to the initial triggers of secondary amenorrhoea. To treat drug-induced amenorrhoea, stopping the medication on the advice of a doctor is a usual course of action.
Looking at Hypothalamic amenorrhoea, studies have provided that the administration of a selective serotonin reuptake inhibitor (SSRI) might correct abnormalities of Functional Hypothalamic Amenorrhoea (FHA) related to the condition of stress-related amenorrhoea. This involves the repair of the PI3K signaling pathway, which facilitates the integration of metabolic and neural signals regulating gonadotropin releasing hormone (GnRH)/luteinizing hormone (LH). In other words, it regulates the neuronal activity and expression of neuropeptide systems that promote GnRH release. However, SSRI therapy represents a possible hormonal solution to just one hormonal condition of hypothalamic amenorrhoea. Furthermore, because the condition involves the inter workings of many different neurotransmitters, much research is still to be done on presenting hormonal treatment that would counteract the hormonal affects.
As for physiological treatments to hypothalamic amenorrhoea, injections of metreleptin (r-metHuLeptin) have been tested as treatment to oestrogen deficiency resulting from low gonadotropins and other neuroendocrine defects such as low concentrations of thyroid and IGF-1. R-metHuLeptin has appeared effective in restoring defects in the hypothalamic-pituitary-gonadal axis and improving reproductive, thyroid, and IGF hormones, as well as bone formation, thus curing the amenorrhoea and infertility. However, it has not proved effective in restoring of cortisol and adrenocorticotropin levels, or bone resorption.
Medications consist mostly of antiandrogens, drugs that block the effects of androgens like testosterone and dihydrotestosterone (DHT) in the body, and include:
- Spironolactone: An antimineralocorticoid with additional antiandrogenic activity at high dosages
- Cyproterone acetate: A dual antiandrogen and progestogen. In addition to single form, it is also available in some formulations of combined oral contraceptives at a low dosage (see below). It has a risk of liver damage.
- Flutamide: A pure antiandrogen. It has been found to possess equivalent or greater effectiveness than spironolactone, cyproterone acetate, and finasteride in the treatment of hirsutism. However, it has a high risk of liver damage and hence is no longer recommended as a first- or second-line treatment.
- Bicalutamide: A pure antiandrogen. It is effective similarly to flutamide but is much safer as well as better-tolerated.
- Birth control pills: Consist of an estrogen, usually ethinylestradiol, and a progestin. They are thought to work by 1) stimulating production of sex hormone-binding globulin in the liver, which decreases free concentrations of testosterone in the blood; and by 2) suppressing luteinizing hormone (LH) secretion from the pituitary gland, which decreases production of testosterone by the gonads. Hence, they are functional antiandrogens. In addition, certain birth control pills contain a progestin that also has antiandrogenic activity. Examples include birth control pills containing cyproterone acetate, chlormadinone acetate, drospirenone, and dienogest.
- Finasteride and dutasteride: 5α-Reductase inhibitors. They inhibit the production of the potent androgen DHT.
- GnRH analogues: Suppress androgen production by the gonads and reduce androgen concentrations to castrate levels.
- Metformin: Antihyperglycemic drug used for diabetes mellitus. However, it is also effective in treatment of hirsutism associated with insulin resistance (e.g. polycystic ovary syndrome)
- Eflornithine: Blocks putrescine that is necessary for the growth of hair follicles
In cases of hyperandrogenism specifically due to congenital adrenal hyperplasia, administration of glucocorticoids will return androgen levels to normal.
Hormone replacement therapy with estrogen may be used to treat symptoms of hypoestrogenism in females with the condition. There are currently no known treatments for the infertility caused by the condition in either sex.
Administration of luteinizing hormone (LH) (or human chorionic gonadotropin) and follicle-stimulating hormone (FSH) is very effective in the treatment of male infertility due to hypogonadotropic hypogonadism. Although controversial, off-label clomiphene citrate, an antiestrogen, may also be effective by elevating gonadotropin levels.
Though androgens are absolutely essential for spermatogenesis and therefore male fertility, exogenous testosterone therapy has been found to be ineffective in benefiting men with low sperm count. This is thought to be because very high local levels of testosterone in the testes (concentrations in the seminiferous tubules are 20- to 100-fold greater than circulating levels) are required to mediate spermatogenesis, and exogenous testosterone therapy (which is administered systemically) cannot achieve these required high local concentrations (at least not without extremely supraphysiological dosages). Moreover, exogenous androgen therapy can actually impair or abolish male fertility by suppressing gonadotropin secretion from the pituitary gland, as seen in users of androgens/anabolic steroids (who often have partially or completely suppressed sperm production). This is because suppression of gonadotropin levels results in decreased testicular androgen production (causing diminished local concentrations in the testes) and because FSH is independently critical for spermatogenesis. In contrast to FSH, LH has little role in male fertility outside of inducing gonadal testosterone production.
Estrogen, at some concentration, has been found to be essential for male fertility/spermatogenesis. However, estrogen levels that are too high can impair male fertility by suppressing gonadotropin secretion and thereby diminishing intratesticular androgen levels. As such, clomiphene citrate (an antiestrogen) and aromatase inhibitors such as testolactone or anastrozole have shown effectiveness in benefiting spermatogenesis.
Low-dose estrogen and testosterone combination therapy may improve sperm count and motility in some men, including in men with severe oligospermia.
Treatment of OHSS depends on the severity of the hyperstimulation.
Mild OHSS can be treated conservatively with monitoring of abdominal girth, weight, and discomfort on an outpatient basis until either conception or menstruation occurs. Conception can cause mild OHSS to worsen in severity.
Moderate OHSS is treated with bed rest, fluids, and close monitoring of labs such as electrolytes and blood counts. Ultrasound may be used to monitor the size of ovarian follicles. Depending on the situation, a physician may closely monitor a women's fluid intake and output on an outpatient basis, looking for increased discrepancy in fluid balance (over 1 liter discrepancy is cause for concern). Resolution of the syndrome is measured by decreasing size of the follicular cysts on 2 consecutive ultrasounds.
Aspiration of accumulated fluid (ascites) from the abdominal/pleural cavity may be necessary, as well as opioids for the pain. If the OHSS develops within an IVF protocol, it can be prudent to postpone transfer of the pre-embryos since establishment of pregnancy can lengthen the recovery time or contribute to a more severe course. Over time, if carefully monitored, the condition will naturally reverse to normal – so treatment is typically supportive, although a woman may need to be treated or hospitalized for pain, paracentesis, and/or intravenous hydration.
Since risk factors are not known and vary among individuals with hyperandrogegism, there is no sure method to prevent this medical condition. Therefore, more longterm studies are needed first to find a cause for the condition before being able to find a sufficient method of prevention.
However, there are a few things that can help avoid long-term medical issues related to hyperandrogenism like PCOS. Getting checked by a medical professional for hyperandrogenism; especially if one has a family history of the condition, irregular periods, or diabetes; can be beneficial. Watching your weight and diet is also important in decreasing your chances, especially in obese females, since continued exercise and maintaining a healthy diet leads to an improved menstrual cycle as well as to decreased insulin levels and androgen concentrations.
Treatment may consist of surgery in the case of tumors, lower doses of estrogen in the case of exogenously-mediated estrogen excess, and estrogen-suppressing medications like gonadotropin-releasing hormone analogues and progestogens. In addition, androgens may be supplemented in the case of males.
Medical treatment of gynecomastia is most effective when done within the first two years after the start of male breast enlargement. Selective estrogen receptor modulators (SERMs) such as tamoxifen, raloxifene, and clomifene may be beneficial in the treatment of gynecomastia but are not approved by the Food and Drug Administration for use in gynecomastia. Clomifene seems to be less effective than tamoxifen or raloxifene. Tamoxifen may be used for painful gynecomastia in adults. Aromatase inhibitors (AIs) such as anastrozole have been used off-label for cases of gynecomastia occurring during puberty but are less effective than SERMs. A few cases of gynecomastia caused by the rare disorders aromatase excess syndrome and Peutz–Jeghers syndrome have responded to treatment with AIs such as anastrozole. Androgens/anabolic steroids may be effective for gynecomastia. Testosterone itself may not be suitable to treat gynecomastia as it can be aromatized into estradiol, but non-aromatizable androgens like topical androstanolone (dihydrotestosterone) can be useful.
Many women with unwanted hair seek methods of hair removal. However, the causes of the hair growth should be evaluated by a physician, who can conduct blood tests, pinpoint the specific origin of the abnormal hair growth, and advise on the treatment.
Treatments vary according to the underlying disease and the degree of the impairment of the male fertility. Further, in an infertility situation, the fertility of the female needs to be considered.
Pre-testicular conditions can often be addressed by medical means or interventions.
Testicular-based male infertility tends to be resistant to medication. Usual approaches include using the sperm for intrauterine insemination (IUI), in vitro fertilization (IVF), or IVF with intracytoplasmatic sperm injection (ICSI). With IVF-ICSI even with a few sperm pregnancies can be achieved.
Obstructive causes of post-testicular infertility can be overcome with either surgery or IVF-ICSI. Ejaculatory factors may be treatable by medication, or by IUI therapy or IVF.
Vitamin E helps counter oxidative stress, which is associated with sperm DNA damage and reduced sperm motility. A hormone-antioxidant combination may improve sperm count and motility. However there is only some low quality evidence from few small studies that oral antioxidants given to males in couples undergoing in vitro fertilisation for male factor or unexplained subfertility result in higher live birth rate. It is unclear if there are any adverse effects.
Treatment of HH may consist of administration of either a GnRH agonist or a gonadotropin formulation in the case of primary HH and treatment of the root cause (e.g., a tumor) of the symptoms in the case of secondary HH. Alternatively, hormone replacement therapy with androgens and estrogens in males and females, respectively, may be employed.
No treatments for luteomas are currently available. The luteomas can be detected through ultrasound if masculinization is apparent in the mother. The fetus can be tested for gene type and if the fetus is female and the umbilical cord tests high for testosterone levels then the risks of masculinization of the fetus can be considered. Interventions can't be made to change the outcomes, but the potential risks can be analyzed in order to make preparations. After the fetus is delivered the luteoma regresses on its own and only monitoring of the mother is needed after delivery. Depending on the sex of the fetus, exposure time and duration, the parents may need to decide if they will raise the child as male or female. Surgery may be necessary depending on what sex the child is going to be raised.
Direct treatment is geared toward resolving hyperprolactinemic symptoms or reducing tumor size. Patients on medications that cause hyperprolactinaemia should have them withdrawn if possible. Patients with hypothyroidism should be given thyroid hormone replacement therapy. When symptoms are present, medical therapy is the treatment of choice. Patients with hyperprolactinemia and no symptoms (idiopathic or microprolactinoma) can be monitored without treatment. Consider treatment for women with amenorrhea. In addition, dual energy X-ray absorptiometry scanning should be considered to evaluate bone density. The persistent hypogonadism associated with hyperprolactinemia can lead to osteoporosis. Treatment significantly improves the patient's quality of life. If the goal is to treat hypogonadism only, patients with idiopathic hyperprolactinemia or microadenoma can be treated with estrogen replacement therapy and prolactin levels can be monitored. Radiation treatment is another option. However, the risk of hypopituitarism makes this a poor choice. It may be necessary for rapidly growing tumors, but its benefits in routine treatment have not been shown to outweigh the risks.
If chronic gynecomastia is treated, surgical removal of glandular breast tissue is usually required. Surgical approaches to the treatment of gynecomastia include subcutaneous mastectomy, liposuction-assisted mastectomy, laser-assisted liposuction, and laser-lipolysis without liposuction. Complications of mastectomy may include hematoma, surgical wound infection, breast asymmetry, changes in sensation in the breast, necrosis of the areola or nipple, seroma, noticeable or painful scars, and contour deformities.
Treatment may consist of hormone replacement therapy with androgens in either sex. Alternatively, gonadotropin-releasing hormone (GnRH)/GnRH agonists or gonadotropins may be given (in the case of "hypogonadotropic" hypoandrogenism). The Food and Drug Administration (FDA) stated in 2015 that neither the benefits nor the safety of testosterone have been established for low testosterone levels due to aging. The FDA has required that testosterone pharmaceutical labels include warning information about the possibility of an increased risk of heart attacks and stroke.
General indications for pituitary surgery include patient drug intolerance, tumors resistant to medical therapy, patients who have persistent visual field defects in spite of medical treatment, and patients with large cystic or hemorrhagic tumors.
Treatment is usually medication with dopamine agonists such as cabergoline, bromocriptine (often preferred when pregnancy is possible), and less frequently lisuride. A new drug in use is norprolac with the active ingredient quinagolide. Terguride is also used.
"Vitex agnus-castus" extract can be tried in cases of mild hyperprolactinaemia.
HAIR-AN syndrome as discussed earlier is caused by both gentic and environmental factors. It is found out that women affected by this syndrome or PCOS (polycystic ovary syndrome) are generally accompanied by obesity. Weight loss is most suggested way to combat this syndrome and is helpful for reducing insulin resistance of the body. It is also a good way to have a control on diet. This might help the body to refunction properly and show some resistance to HAIR-AN syndrome. "Suppression of gonadotropin with estrogen-progesterone oral contraceptives" or can say as reducing hyperandrogenism by the use of estoprogestatif can reduce production of androgen by ovaries by cutting down the LH (leutinizing hormone) level in body. Even their sex hormone binding to globulin increase is also responsible for decreasing body's bio-availability of testosterone. There are also few pills of new progestins, such as desogestrel and norgestimate. This pills appear to have fewer androgenic side effects and may be safer to use in persons with abnormal lipid levels or hirsutism. Some antiandrogenic agents can be also used alone or combining it with other oral pills.
"Spironolactone inhibit the actions of testosterone by binding to its receptors." The standard dose for its use is considered to be 50 to 100 mg twice a day. This might lead to irregular menstrual bleeding, which can be improved by oral contraceptives. Flutamide, an another antiandorgen that is used to treat HAIR-AN syndrome, but it has risk of hepatotoxicity. Finasteride is a 5α-reductase inhibitor which can reduces the conversion of testosterone to dihydrotestosterone. It is useful in the treatment of hirsutism with a dosages as low as 5 mg per day.
Insulin-resistant patients can also be treated with metformin which has shown promising results to reduce the insulin resistivity. Metformin improves peripheral tissue sensitivity to insulin but inhibits hepatic glucose formation. The drug reduces the levels of circulating insulin and androgens. Women have shown improved reproductive functioning after the use of metformin.
Treatment depends on the cause of infertility, but may include counselling, fertility treatments, which include in vitro fertilization. According to ESHRE recommendations, couples with an estimated live birth rate of 40% or higher per year are encouraged to continue aiming for a spontaneous pregnancy. Treatment methods for infertility may be grouped as medical or complementary and alternative treatments. Some methods may be used in concert with other methods. Drugs used for both women and men include clomiphene citrate, human menopausal gonadotropin (hMG), follicle-stimulating hormone (FSH), human chorionic gonadotropin (hCG), gonadotropin-releasing hormone (GnRH) analogues, aromatase inhibitors, and metformin.
Treatment for ovarian remnant (ORS) is generally indicated for women with suspected ORS who have symptoms (such as pain); have a pelvic mass; or need or desire complete removal of to decrease the risk of ovarian (for example, BRCA ). The mainstay of treatment is surgery to remove the residual ovarian tissue. Women with ORS with a pelvic mass should have appropriate evaluation for malignancy (cancer). Hormonal therapy to suppress ovarian function is an alternative treatment for those who refuse surgery, or those who are not candidates for surgery. Medications may be used to treat ORS and include GnRH agonists, danazol, or progesterone.
Medical treatment of infertility generally involves the use of fertility medication, medical device, surgery, or a combination of the following. If the sperm are of good quality and the mechanics of the woman's reproductive structures are good (patent fallopian tubes, no adhesions or scarring), a course of ovarian stimulating medication maybe used. The physician or WHNP may also suggest using a conception cap cervical cap, which the patient uses at home by placing the sperm inside the cap and putting the conception device on the cervix, or intrauterine insemination (IUI), in which the doctor or WHNP introduces sperm into the uterus during ovulation, via a catheter. In these methods, fertilization occurs inside the body.
If conservative medical treatments fail to achieve a full term pregnancy, the physician or WHNP may suggest the patient undergo in vitro fertilization (IVF). IVF and related techniques (ICSI, ZIFT, GIFT) are called assisted reproductive technology (ART) techniques.
ART techniques generally start with stimulating the ovaries to increase egg production. After stimulation, the physician surgically extracts one or more eggs from the ovary, and unites them with sperm in a laboratory setting, with the intent of producing one or more embryos. Fertilization takes place outside the body, and the fertilized egg is reinserted into the woman's reproductive tract, in a procedure called embryo transfer.
Other medical techniques are e.g. tuboplasty, assisted hatching, and Preimplantation genetic diagnosis.