Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Most head injuries are of a benign nature and require no treatment beyond analgesics and close monitoring for potential complications such as intracranial bleeding. If the brain has been severely damaged by trauma, neurosurgical evaluation may be useful. Treatments may involve controlling elevated intracranial pressure. This can include sedation, paralytics, cerebrospinal fluid diversion. Second line alternatives include decompressive craniectomy (Jagannathan et al. found a net 65% favorable outcomes rate in pediatric patients), barbiturate coma, hypertonic saline and hypothermia. Although all of these methods have potential benefits, there has been no randomized study that has shown unequivocal benefit.
Clinicians will often consult clinical decision support rules such as the Canadian CT Head Rule or the New Orleans/Charity Head injury/Trauma Rule to decide if the patient needs further imaging studies or observation only. Rules like these are usually studied in depth by multiple research groups with large patient cohorts to ensure accuracy given the risk of adverse events in this area.
Treatment for brachial plexus injuries includes orthosis/splinting, occupational or physical therapy and, in some cases, surgery. Some brachial plexus injuries may heal without treatment. Many infants improve or recover within 6 months, but those that do not have a very poor outlook and will need further surgery to try to compensate for the nerve deficits. The ability to bend the elbow (biceps function) by the third month of life is considered an indicator of probable recovery, with additional upward movement of the wrist, as well as straightening of thumb and fingers an even stronger indicator of excellent spontaneous improvement. Gentle range of motion exercises performed by parents, accompanied by repeated examinations by a physician, may be all that is necessary for patients with strong indicators of recovery.
The exercises mentioned above can be done to help rehabilitate from mild cases of the injury. However, in more serious brachial plexus injuries surgical interventions can be used. Function can be restored by nerve repairs, nerve replacements, and surgery to remove tumors causing the injury. Another crucial factor to note is that psychological problems can hinder the rehabilitation process due to a lack of motivation from the patient. On top of promoting a lifetime process of physical healing, it is important to not overlook the psychological well-being of a patient. This is due to the possibility of depression or complications with head injuries.
There are many treatments to facilitate the process of recovery in people who have brachial plexus injuries. Improvements occur slowly and the rehabilitation process can take up to many years. Many factors should be considered when estimating recovery time, such as initial diagnosis of the injury, severity of the injury, and type of treatments used. Some forms of treatment include nerve grafts, medication, surgical decompression, nerve transfer, physical therapy, and occupational therapy.
Stingers can be prevented by wearing protective gear, such as butterfly restrictors, designed to protect the head and neck from being forced into unnatural positions. This equipment is more feasible in positions where unrestricted head and neck movement is not required, such as American football lineman, than in positions like quarterback, where such movement is integral. Regardless of equipment, it is important to report even minor symptoms to an athletic trainer or team physician, and to allow appropriate recovery time.
Initial care in the hospital, as in the prehospital setting, aims to ensure adequate airway, breathing, cardiovascular function, and spinal immobilization. Imaging of the spine to ascertain presence of SCI may need to wait if emergency surgery is needed to stabilize a life-threatening injury. Acute SCI merits treatment in an intensive care unit, especially injuries to the cervival spinal cord. Patients with SCI need repeated neurological assessments and treatment by neurosurgeons.
If the systolic blood pressure falls below 90 mmHg within days of the injury, blood supply to the spinal cord may be reduced, resulting in further damage. Thus it is important to maintain the blood pressure using a central venous catheter, intravenous fluids, and vasopressors, and to treat cases of shock. Mean arterial blood pressure is measured and kept at 85 to 90 mmHg for seven days after injury. The treatment for shock from blood loss (hypovolemic shock) is different from that for neurogenic shock, and could harm people with the latter type, so it is necessary to determine why someone is in shock. However it is also possible for both causes to exist at the same time. Another important aspect of care is prevention of hypoxia (insufficient oxygen in the bloodstream), which could deprive the spinal cord of much-needed oxygen. People with cervical injuries may experience a dangerously slowed heart rate; treatment to speed it up include atropine and electrical cardiac pacing.
Swelling can cause further damage to the spinal cord by reducing the blood supply and causing ischemia, which can give rise to an ischemic cascade with a release of toxins that damages neurons. Thus treatment is often geared toward limiting this secondary injury. People are sometimes treated with drugs to reduce swelling. The corticosteroid drug methylprednisolone is commonly used within eight hours of the injury, but its use is controversial because of side effects. Studies have shown high dose methylprednisolone may improve outcomes if given within 6 hours of injury. However, the improvement shown by clinical trials has been inconclusive, and comes at the cost of increased risk of serious infection or sepsis, gastrointestinal bleeding, and pneumonia. Thus organizations that set clinical guidelines have increasingly stopped recommending methylprednisolone in the treatment of acute SCI.
Surgery may be necessary, e.g. to relieve excess pressure on the cord, to stabilize the spine, or to put vertebrae back in their proper place. In cases involving instability or compression, failing to operate can lead to worsening of the condition. Surgery is also necessary when something is pressing on the cord, such as bone fragments, blood, material from ligaments or intervertebral discs, or a lodged object from a penetrating injury. Although the ideal timing of surgery is still debated, studies have found that earlier surgical intervention (within 24 hours of injury) is associated with better outcomes. Sometimes a patient has too many other injuries to be a surgical candidate this early. Surgery is controversial because it has potential complications (such as infection), so in cases where it is not clearly needed (e.g. the cord is being compressed), doctors must decide whether to perform surgery based on aspects of the patient's condition and their own beliefs about its risks and benefits.
In cases where a more conservative approach is chosen, bed rest, cervical collars, immobilizing devices, and optionally traction are used. Surgeons may opt to put traction on the spine to remove pressure from the spinal cord by putting dislocated vertebrae back into alignment, but herniation of intervertebral disks may prevent this technique from relieving pressure. "Gardner-Wells tongs" are one tool used to exert spinal traction to reduce a fracture or dislocation and to immobilize the affected areas.
The first line of treatment is often to treat the patients pain with neuropathic drugs such as tricyclic antidepressants, serotonin reuptake inhibitors, and anticonvulsants. The second lines of drugs to treat pain are non-steroidal anti-inflammatories, tramadol, and opioids. Other techniques used to facilitate healing of the nerve and pain are either static or dynamic splinting that can both help protect the injured part as well as improve function. Sometimes surgery is an option, although the prognosis is still very poor of regaining function of the affected nerve. The goal of surgery is to join healthy nerve to unhealthy nerve. The most common surgical techniques include external neurolysis, end-to-end repair, nerve grafting, and nerve transfer from somewhere else in the body.
Stingers are best diagnosed by a medical professional. This person will assess the athlete's pain, range of head and neck motion, arm numbness, and muscle strength. Often, the affected athlete is allowed to return to play within a short time, but persistent symptoms will result in removal. Athletes are also advised to receive
regular evaluations until symptoms have ceased. If they have not after two weeks, or increase, additional tests such as magnetic resonance imaging (MRI) can be performed to detect a more serious injury, such as a herniated disc.
The order of treatments applied depends on whether the athlete's main complaint is pain or weakness. Both can be treated with an analgesic, anti-inflammatory medication, ice and heat, restriction of movement, and if necessary, cervical collar or traction. Surgery is only necessary in the most severe cases.
The most-often prescribed treatments for early-stage RSIs include analgesics, myofeedback, biofeedback, physical therapy, relaxation, and ultrasound therapy. Low-grade RSIs can sometimes resolve themselves if treatments begin shortly after the onset of symptoms. However, some RSIs may require more aggressive intervention including surgery and can persist for years.
General exercise has been shown to decrease the risk of developing RSI. Doctors sometimes recommend that RSI sufferers engage in specific strengthening exercises, for example to improve sitting posture, reduce excessive kyphosis, and potentially thoracic outlet syndrome. Modifications of posture and arm use (human factors and ergonomics) are often recommended.
The treatment and management of radial neuropathy can be achieved via the following methods:
- Physical therapy or occupational therapy
- Surgery(depending on the specific area and extent of damage)
- Splinting
Neurapraxia is often treated and cured by non-operative means. The primary goals of treatment are to maintain the proper nutrition of the paralyzed muscles, prevent contraction by the antagonists of the paralyzed muscles, and to consistently keep the joints mobile. A splint is often used in cases of neurapraxia because it is able to maintain a relaxed position of the paralyzed muscle. The splint prevents the paralyzed muscle from being overstretched either by the force of gravity or by other non-paralyzed antagonists. During the recovery period of neurapraxia, it is essential that the joints constantly undergo passive movement in order to preserve proper mobility. If joints are kept mobile, the limb has the best possible chance of benefit from the return of nervous function. Non-steroidal anti-inflammatory medications can also help to reduce swelling at the injury site. In addition to these non-operative remedies, it is suggested that muscles affected by neurapraxia be kept warm at all times. Circulation in the limb is stimulated with the use of heat.
Once voluntary movement has returned to the muscle, recovery and treatment continues by the participation in active exercises. Physical Therapy and Occupational Therapy are common sources of treatment during these early stages of restoration of active movement. Almost all cases of neurapraxia can be completely treated by non-operative means.
While pain symptoms may be effectively controlled using medications such as NSAID, amitriptyline, or vitamin B6 supplementation, effective treatment generally requires resolving the underlying cause.
Mild to moderate symptoms, such as pain or paresthesia, are treated conservatively with non-surgical approaches. Physiotherapy treatments can prove effective at treating cubital tunnel syndrome symptoms and can include:
- Joint mobilizations
- Neural flossing/gliding
- Strengthening/stretching exercises
- Activity modification
It is important to identify positions and activities that aggravate symptoms and to find ways to avoid them. For example, if the person experiences symptoms when holding a telephone up to the head, then the use of a telephone headset will provide immediate symptomatic relief and reduce the likelihood of further damage and inflammation to the nerve. For cubital tunnel syndrome, it is recommended to avoid repetitive elbow flexion and also avoiding prolonged elbow flexion during sleep, as this position puts stress of the ulnar nerve.
Surgery is recommended for those who are not improved with conservative therapy or those with serious or progressive symptoms. The surgical approaches vary, and may depend on the location or cause of impingement. Cubital and ulnar tunnel release can be performed wide awake with no general anaesthesia, no regional anaesthesia, no sedation and no tourniquet, and are usually done by Plastic Surgeons
SCI patients often require extended treatment in specialized spinal unit or an intensive care unit. The rehabilitation process typically begins in the acute care setting. Usually the inpatient phase lasts 8–12 weeks and then the outpatient rehabilitation phase lasts 3–12 months after that, followed by yearly medical and functional evaluation. Physical therapists, occupational therapists, recreational therapists, nurses, social workers, psychologists and other health care professionals work as a team under the coordination of a physiatrist to decide on goals with the patient and develop a plan of discharge that is appropriate for the person’s condition.
In the acute phase physical therapists focus on the patient’s respiratory status, prevention of indirect complications (such as pressure ulcers), maintaining range of motion, and keeping available musculature active.
For people whose injuries are high enough to interfere with breathing, there is great emphasis on airway clearance during this stage of recovery. Weakness of respiratory muscles impairs the ability to cough effectively, allowing secretions to accumulate within the lungs. As SCI patients suffer from reduced total lung capacity and tidal volume, physical therapists teach them accessory breathing techniques (e.g. apical breathing, glossopharyngeal breathing) that typically are not taught to healthy individuals. Physical therapy treatment for airway clearance may include manual percussions and vibrations, postural drainage, respiratory muscle training, and assisted cough techniques. Patients are taught to increase their intra-abdominal pressure by leaning forward to induce cough and clear mild secretions. The quad cough technique is done lying on the back with the therapist applying pressure on the abdomen in the rhythm of the cough to maximize expiratory flow and mobilize secretions. Manual abdominal compression is another technique used to increase expiratory flow which later improves coughing. Other techniques used to manage respiratory dysfunction include respiratory muscle pacing, use of a constricting abdominal binder, ventilator-assisted speech, and mechanical ventilation.
The amount of functional recovery and independence achieved in terms of activities of daily living, recreational activities, and employment is affected by the level and severity of injury. The Functional Independence Measure (FIM) is an assessment tool that aims to evaluate the function of patients throughout the rehabilitation process following a spinal cord injury or other serious illness or injury. It can track a patient's progress and degree of independence during rehabilitation. People with SCI may need to use specialized devices and to make modifications to their environment in order to handle activities of daily living and to function independently. Weak joints can be stabilized with devices such as ankle-foot orthoses (AFOs) and knee-AFOs, but walking may still require a lot of effort. Increasing activity will increase chances of recovery.
According to medical professionals with the Cleveland Clinic, once an athlete suffers from an episode of cervical spinal cord, team physician or athletic trainer first stabilize the head and neck followed by a thorough neurologic inspection. If the injury is deemed severe, injured parties should be taken to a hospital for evaluation. Athletes that suffer from severe episodes of neurapraxia are urged to consult orthopaedic or spinal medical specialists. In mild cases of neurapraxia, the athlete is able to remove themselves from the field of play. However, the athlete is still advised to seek medical consultation.
Treatment for ulnar neuropathy can entail:
NSAID (non-steroidal anti-inflammatory) medicines. there is also the option of cortisone. Another possible option is splinting, to secure elbow, a conservative procedure endorsed by some. In cases where surgery is needed, cubital tunnel release, where the ligament of the cubital tunnel is cut, thereby alleviating pressure on nerve can be performed.
Treatment for the common occurrence of ulnar neuropathy resulting from overuse, with no fractures or structural abnormalities, is treatment massage, ice, and anti-inflammatories. Specifically, deep tissue massage to the triceps, myofascial release for the upper arm connective tissue, and cross-fiber friction to the triceps tendon.
Physical therapy can be somewhat useful for patient’s recovery from surgery. The main focus of rehabilitation is centered on controlling the bladder and bowel functions and decreasing muscle weakness in the lower extremities.
In many cases recovery happens spontaneously and no treatment is needed. This spontaneous recovery can occur because distance between the injury location and the deltoid muscle is small. Spontaneous recovery may take as long as 12 months.
In order to combat pain and inflammation of nerves, medication may be prescribed.
Surgery is an option, but it has mixed results within the literature and is usually avoided because only about half of people who undergo surgery see any positive results from it. Some suggest that surgical exploration should be considered if no recovery occurs after 3 to 6 months. Some surgical options include nerve grafting, neurolysis, or nerve reconstruction. Surgery results are typically better for younger patients (under 25) and for nerve grafts less than six centimeters.
For some, recovery does not occur and surgery is not possible. In these cases, most patients’ surrounding muscles can compensate, allowing them to gain a satisfactory range of motion back. Physical therapy or Occupational therapy will help retrain and gain muscle tone back.
In children with uncomplicated minor head injuries the risk of intra cranial bleeding over the next year is rare at 2 cases per 1 million. In some cases transient neurological disturbances may occur, lasting minutes to hours. Malignant post traumatic cerebral swelling can develop unexpectedly in stable patients after an injury, as can post traumatic seizures. Recovery in children with neurologic deficits will vary. Children with neurologic deficits who improve daily are more likely to recover, while those who are vegetative for months are less likely to improve. Most patients without deficits have full recovery. However, persons who sustain head trauma resulting in unconsciousness for an hour or more have twice the risk of developing Alzheimer's disease later in life.
Head injury may be associated with a neck injury. Bruises on the back or neck, neck pain, or pain radiating to the arms are signs of cervical spine injury and merit spinal immobilization via application of a cervical collar and possibly a long board.If the neurological exam is normal this is reassuring. Reassessment is needed if there is a worsening headache, seizure, one sided weakness, or has persistent vomiting.
To combat overuse of Head CT Scans yielding negative intracranial hemorrhage, which unnecessarily expose patients to radiation and increase time in the hospital and cost of the visit, multiple clinical decision support rules have been developed to help clinicians weigh the option to scan a patient with a head injury. Among these are the Canadian Head CT rule, the PECARN Head Injury/Trauma Algorithm, and the New Orleans/Charity Head Injury/Trauma Rule all help clinicians make these decisions using easily obtained information and noninvasive practices.
The management of true cauda equina syndrome frequently involves surgical decompression. When cauda equina syndrome is caused by a herniated disk early surgical decompression is recommended.
Cauda equina syndrome of sudden onset is regarded as a medical/surgical emergency. Surgical decompression by means of laminectomy or other approaches may be undertaken within 6, 24 or 48 hours of symptoms developing if a compressive lesion, e.g., ruptured disc, epidural abscess, tumour or haematoma is demonstrated. Early treatment may significantly improve the chance that long-term neurological damage will be avoided.
Surgery may be required to remove blood, bone fragments, a tumor or tumors, a herniated disc or an abnormal bone growth. If the tumor cannot be removed surgically and it is malignant then radiotherapy may be used as an alternative to relieve pressure, with spinal neoplasms chemotherapy can also be used. If the syndrome is due to an inflammatory condition e.g., ankylosing spondylitis, anti-inflammatory, including steroids can be used as an effective treatment. If a bacterial infection is the cause then an appropriate course of antibiotics can be used to treat it.
Cauda equina syndrome can occur during pregnancy due to lumbar disc herniation; age of mother increases the risk. Surgery can still be performed and the pregnancy does not adversely affect treatment. Treatment for those with cauda equina can and should be carried out at any time during pregnancy.
Lifestyle issues may need to be addressed post - treatment. Issues could include the patients need for physiotherapy and occupational therapy due to lower limb dysfunction. Obesity might also need to be tackled.
People who suffer from neurotmesis often face a poor prognosis. They will more than likely never regain full functionality of the affected nerve, but surgical techniques do give people a better chance at regaining some function. Current research is focused on new ways to regenerate nerves and advance surgical techniques.
This method should be used within the first 48–72 hours after the injury in order to speed up the recovery process.
Heat: Applying heat to the injured area can cause blood flow and swelling to increase.
Alcohol: Alcohol can inhibit your ability to feel if your injury is becoming more aggravated, as well as increase blood flow and swelling.
Re-injury: Avoid any activities that could aggravate the injury and cause further damage.
Massage: Massaging an injured area can promote blood flow and swelling, and ultimately do more damage if done too early.
Prompt medical treatment should be sought for suspected dislocation.
Usually, the shoulder is kept in its current position by use of a splint or sling. A pillow between the arm and torso may provide support and increase comfort. Strong analgesics are needed to allay the pain of a dislocation and the distress associated with it.
Shoulder reduction may be accomplished with a number of techniques including traction-countertraction, external rotation, scapular manipulation, Stimson technique, Cunningham technique, or Milch technique. Pain can be managed during the procedures either by procedural sedation and analgesia or injected lidocaine into the shoulder joint. Injecting lidocaine into the joint may be less expensive and faster. If a shoulder cannot be relocated in the emergency room, relocation in the operating room maybe required. This situation occurs in about 7% of cases.
Depending on the stability achieved via initial treatment, the patient may be allowed to stand and walk with help of support within about six to eight weeks. Full function may return in about three months.
Schwann cells provide the nerve with protection through the production of Nerve Growth Factors, and because these cells are intact this kind of nerve injury can be cured and normal feeling and sensations can be restored. Surgery can be done in order to help the nerve heal. The surgery will help with nerve regeneration, providing guidance to the nerve sprouts on where to attach on the proximal side of the injury. Damaged nerve axons can reattach themselves after surgery. Treatment of axonotmesis also consists of:
- Physical therapy or Occupational Therapy. Physical or Occupational therapy aims include:
- Pain relief
- Maintain range of motion
- Reducing muscular atrophy
- Patient education
- Use of assistive devices (Orthotic needs)
In terms of prognosis radial neuropathy is not necessarily permanent, though sometimes there could be partial loss of movement/sensation.Complications may be possible deformity of the hand in some individuals.
If the injury is axonal (the underlying nerve fiber itself is damaged) then full recovery may take months or years ( or could be permanent). EMG and nerve conduction studies are typically performed to diagnose the extent and distribution of the damage, and to help with prognosis for recovery.