Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
No cure for the condition as such exists. A number of treatments may provide partial relief:
- Botox injections may temporarily disable the muscle and provide relief for 3-4 months per injection
- Muscle relaxants
- Lorazepam (Ativan), diazepam (Valium) and other benzodiazepines relax the smooth muscle in the throat, slowing or halting contractions. In some people, benzodiazepines may have addictive properties.
- Stress reduction
- High stress levels make these spasms more noticeable
- It is advisable to take note of when your symptoms are at their worst
- Warm fluids
- Hot fluids may be helpful for some people with cricopharyngeal spasm (or other esophageal disorders)
Ressurance to the patient when no cause can be found.
In case of a cause treat the cause.
Management of symptoms for patients within this subgroup of the GERD spectrum is difficult. Once these patients are identified, behavioural and dietary changes are advised. Dietary modifications may include limiting the intake of chocolate, caffeine, acidic food and liquids, gaseous beverages and foods high in fat. Behavioral changes may include weight loss, cessation of smoking, limiting alcohol consumption and avoiding the ingestion of food shortly before bed. Lifestyle changes in children diagnosed with LPR include dietary modifications to avoid foods that will aggravate reflux (e.g., chocolate or acidic and spicy food), altering positioning (e.g., sleeping on your side), modifying the textures of foods (e.g., thickening feeds to heighten awareness of the passing bolus), and eliminating the intake of food before bed.
Proton pump inhibitors (PPIs) are the leading pharmaceutical intervention chosen for the relief and reduction of LPR and are typically recommended for ongoing use twice a day for a period of 3–6 months. PPIs have been shown to be ineffective in very young children and are of uncertain efficacy in older children, for whom their use has been discouraged. While PPIs may provide limited clinical benefits in some adults, there is insufficient evidence to support routine use. Many studies show that PPIs are not more effective than placebos in treating LPR.
When medical management fails, Nissen fundoplication can be offered. However, patients should be advised that surgery may not result in complete elimination of LPR symptoms and even with immediate success, recurrence of symptoms later on is still possible.
One way to assess treatment outcomes for LPR is through the use of voice quality measures. Both subjective and objective measures of voice quality can be used to assess treatment outcomes. Subjective measures include scales such as the Grade, Roughness, Breathiness, Asthenia, Strain Scale (GRBAS); the Reflux Symptom Index; the Voice Handicap Index (VHI); and a voice symptom scale. Objective measures often rely on acoustic parameters such as jitter, shimmer, signal-to-noise ratio, and fundamental frequency, among others. Aerodynamic measures such as vital capacity and maximum phonation time (MPT) have also been used as an objective measure. However, there is not yet a consensus on how best to use the measures or which measures are best to assess treatment outcomes for LPR.
Some degree of control of the fasciculations may be achieved with the same medication used to treat essential tremor (beta-blockers and anti-seizure drugs). However, often the most effective approach to treatment is to treat any accompanying anxiety. No drugs, supplements, or other treatments have been found that completely control the symptoms. In cases where fasciculations are caused by magnesium deficiency, supplementing magnesium can be effective in reducing symptoms.
In many cases, the severity of BFS symptoms can be significantly reduced through a proactive approach to decrease the overall daily stress. Common ways to reduce stress include: exercising more, sleeping more, working less, meditation, and eliminating all forms of dietary caffeine (e.g. coffee, chocolate, cola, and certain over-the counter medications).
If pain or muscle aches are present alongside fasciculations, patients may be advised to take over-the-counter pain medications such as ibuprofen or acetaminophen during times of increased pain. Other forms of pain management may also be employed. Prior to taking any over-the-counter medications, individuals should initiate discussions with their health care provider(s) to avoid adverse effects associated with long-term usage or preexisting conditions.
In the past, dopamine blocking agents have been used in the treatment of spasmodic torticollis. Treatment was based on the theory that there is an imbalance of the neurotransmitter dopamine in the basal ganglia. These drugs have fallen out of fashion due to various serious side effects: sedation, parkinsonism, and tardive dyskinesia.
Other oral medications can be used in low doses to treat early stages of spasmodic torticollis. Relief from spasmodic torticollis is higher in those patients who take anticholinergic agents when compared to other oral medications. Many have reported complete management with gabapentin alone or in combination with another drug such as clonazepam. 50% of patients who use anticholinergic agents report relief, 21% of patients report relief from clonazepam, 11% of patients report relief from baclofen, and 13% from other benzodiazepines.
Higher doses of these medications can be used for later stages of spasmodic torticollis; however, the frequency and severity of side effects associated with the medications are usually not tolerated. Side effects include dry mouth, cognitive disturbance, drowsiness, diplopia, glaucoma and urinary retention.
The most commonly used treatment for spasmodic torticollis is the use of botulinum toxin injection in the dystonic musculature. Botulinum toxin type A is most often used; it prevents the release of acetylcholine from the presynaptic axon of the motor end plate, paralyzing the dystonic muscle. By disabling the movement of the antagonist muscle, the agonist muscle is allowed to move freely. With botulinum toxin injections, patients experience relief from spasmodic torticollis for approximately 12 to 16 weeks. There are several type A preparations available worldwide; however Botox and Dysport are the only preparations approved by the U.S. Food and Drug Administration (FDA) for clinical use in the United States.
Some patients experience or develop immunoresistance to botulinum toxin type A and must use botulinum toxin type B. Approximately 4% to 17% of patients develop botulinum toxin type A antibodies. The only botulinum toxin type B accessible in the United States is Myobloc. Treatment using botulinum toxin type B is comparable to type A, with an increased frequency of the side effect dry mouth.
Common side effects include pain at the injection site (up to 28%), dysphagia due to the spread to adjacent muscles (11% to 40%), dry mouth (up to 33%), fatigue (up to 17%), and weakness of the injected or adjacent muscle (up to 56%). A Cochrane review published in 2016 reported moderate-quality evidence that a single Botulinum toxin-B treatment session could improve cervical dystonia symptoms by 10% to 20%, although with an increased risk of dry mouth and swallowing difficulties.
Laryngopharyngeal reflux treatment primarily involves behavioural management and medication. Behavioural management involves aspects such as
- Wearing loose clothing
- Eating smaller, more frequent meals
- Avoiding certain foods (e.g. caffeine, alcohol, spicy foods)
Anti-reflux medications may be prescribed for patients with signs of chronic laryngitis and hoarse voice. If anti-reflux treatment does not result in a decrease of symptoms, other possible causes should be examined. Over-the-counter medications for neutralizing acids (antacids) and acid suppressants (H-2 blockers) may be used. Antacids are often short-acting and may not be sufficient for treatment. Proton pump inhibitors are an effective type of medication. These should only be prescribed for a set period of time, after which the symptoms should be reviewed. Proton pump inhibitors do not work for everyone. A physical reflux barrier (e.g. Gaviscon Liquid) may be more appropriate for some. Antisecretory medications can have several side-effects.
When appropriate, anti-reflux surgery may benefit some individuals.
Mucous membrane pemphigoid may be managed with medication (cyclophosphamide and prednisolone).
Treatment is similar to treatment for benign fasciculation syndrome.
Carbamazepine therapy has been found to provide moderate reductions in symptoms.
When treating hemiballismus, it is first important to treat whatever may be causing the manifestation of this disorder. This could be hyperglycemia, infections, or neoplastic lesions. Some patients may not even need treatment because the disorder is not severe and can be self – limited.
Dopamine Blockers
When pharmacological treatment is necessary, the most standard type of drug to use is an antidopaminergic drug. Blocking dopamine is effective in about ninety percent of patients. Perphenazine, pimozide, haloperidol, and chlorpromazine are standard choices for treatment. Scientists are still unsure as to why this form of treatment works, as dopamine has not been directly linked to hemiballismus.
Anticonvulsants
An anticonvulsant called topiramate has helped patients in three cases and may be a viable treatment for the future.
ITB Therapy
Intrathecal baclofen (ITB) therapy is used to treat a variety of movement disorders such as cerebral palsy and multiple sclerosis. It can also be a possibility to help treat hemiballismus. In one case, before ITB the patient had an average of 10-12 ballism episodes of the right lower limb per hour. During episodes, the right hip would flex up to about 90 degrees, with a fully extended knee. After an ITB pump was implanted and the correct dosage was found, the frequency of ballistic right leg movements decreased to about three per day, and the right hip flexed to only 30 degrees. The patient was also able to better isolate individual distal joint movements in the right lower limb. The patient currently receives 202.4 microg/day of ITB and continues to benefit almost 6 years after the ITB pump was implanted.
Botulinum Injections
New uses for botulinum toxin have included treatment of hemiballismus. However, this is still in the early stages of testing. This treatment deals with the muscular manifestations of hemiballismus as opposed to the neurological causes.
Tetrabenazine
Tetrabenazine has been used to treat other movement disorders, but is now being used to treat hemiballismus. Patients using this medication have had a dramatic response. However, lowering the dosage leads to a return of symptoms. This drug works by depleting dopamine.
Antipsychotics
In one case, a patient had not been responding to haloperidol, thus the physician tried olanzapine. The patient made a significant recovery. More research is being performed on the use of these types of drugs in treating hemiballismus.
Functional Neurosurgery
Surgery as a treatment should only be used on patients with severe hemiballismus that has not responded to treatment. Lesioning of the globus pallidus or deep brain stimulation of the globus pallidus are procedures that can be used on humans. Usually, lesioning is favored over deep brain stimulation because of the maintenance required to continue stimulating the brain correctly and effectively.
The "lump in the throat" sensation that characterizes globus pharyngis is often caused by inflammation of one or more parts of the throat, such as the larynx or hypopharynx, due to cricopharyngeal spasm, gastroesophageal reflux (GERD), laryngopharyngeal reflux or esophageal versatility.
In some cases the cause is unknown and symptoms may be attributed to a cause "i.e." a somatoform or anxiety disorder. It has been recognised as a symptom of depression, which responds to anti-depressive treatment.
Differential diagnosis must be made from Eagle syndrome which uses the patient's description of "something caught in my throat" as a diagnostic tool. Eagle syndrome is an elongation of the styloid process causing irritation to nerves and muscles in the region resulting in a number of unusual symptoms.
The results of recent studies have strongly suggested that GERD is a major cause of globus, though this remains under considerable debate.
A less common cause, distinguished by a "lump in the throat" accompanied with clicking sensation and considerable pain when swallowing, may be due to thyroid-cartilage rubbing against anomalous asymmetrical laryngeal anatomy "e.g." the superior cornu abrading against the thyroid lamina, surgically trimming the offending thyroid-cartilage provides immediate relief in all cases. However this cause is frequently misdiagnosed, despite requiring a simple clinical examination involving careful palpation of the neck side to side which elicits the same click sensation (laryngeal crepitus) and pain as when swallowing, most cases are due to prior trauma to the neck. High resolution computed tomographic (CT) or MRI scan of the larynx is usually required to fully understand the anomalous laryngeal anatomy. Anterior displacement of the thyroid ala on the affected side while swallowing can help resolve symptoms.
Medications that impede the release of excitatory neurotransmitters have been used to control or prevent spasms. Treatment with intrathecal baclofen, a gamma-aminobutyric acid (GABA) agonist, decreases muscle tone and has been shown to decrease the frequency of muscle spasms in ADCP patients. Tetrabenazine, a drug commonly used in the treatment of Huntington's disease, has been shown to be effective treating chorea.
Botulinum toxin injections also act upon acetylcholine to reduce dystonia symptoms. The neurotoxin is active in presynaptic terminals and blocks exocytosis of acetylcholine into the synaptic cleft which reduces muscle activity. Botulinum may also have a role in inhibiting glutamate and changing muscle movement. Studies have also shown possible axon transport of this neurotoxin as well as its function as a pain reliever without affect on overactive muscle movement in myoclonus dystonia patients.
Anticholinergics like benzatropine alleviate dystonia symptoms by blocking reuptake of acetylcholine. Acetylcholine is involved in the pathophysiology of dystonia within the basal ganglia, although its exact role has not been determined. Acetylcholine is involved with dopamine and glutamate pathways in the basal ganglia, in addition to presynaptic muscarinic receptors which are involved in motor control. Acetylcholine is usually overactive in dystonia patients and blocking of this neurotransmitter would reduce contortion of the upper body, but can produce side effects of drowsiness, confusion and memory issues in adults.
One treatment methodogy that is very promising for the treatment of camptocormia is deep brain stimulation. Previously, deep brain stimulation and bilateral stimulation of the subthalamic nucleus and/or globus pallidus internus have been used to treat patients with Parkinson's disease. Studies have shown that similar treatments could be used on patients with severe camptocormia. By using the Burke-Fahn-Marsden Dystonia Rating Scale before and after treatment, it was found that patients experienced significant functional improvement in the ability to walk.
Before prescribing medication for these conditions which often resolve spontaneously, recommendations have pointed to improved skin hygiene, good hydration via fluids, good nutrition, and installation of padded bed rails with use of proper mattresses. Pharmacological treatments include the typical neuroleptic agents such as fluphenazine, pimozide, haloperidol and perphenazine which block dopamine receptors; these are the first line of treatment for hemiballismus. Quetiapine, sulpiride and olanzapine, the atypical neuroleptic agents, are less likely to yield drug-induced parkinsonism and tardive dyskinesia. Tetrabenazine works by depleting presynaptic dopamine and blocking postsynaptic dopamine receptors, while reserpine depletes the presynaptic catecholamine and serotonin stores; both of these drugs treat hemiballismus successfully but may cause depression, hypotension and parkinsonism. Sodium valproate and clonazepam have been successful in a limited number of cases. Stereotactic ventral intermediate thalamotomy and use of a thalamic stimulator have been shown to be effective in treating these conditions.
A placebo-controlled trial of plasmapheresis and IVIG for PANDAS was conducted at the NIH in the late 1990’s, with children randomly assigned (by the NIH pharmacy) to receive plasmapheresis (unblinded) or IVIG/sham IVIG (double blinded). At one month evaluations, placebo infusions produced no improvements in OC or tic symptoms, while 100% of the children receiving IVIG or plasmapheresis improved. The average improvement in OC symptoms was 45% for the group receiving IVIG and nearly 65% for the children receiving plasmapheresis. The results of the trial were sufficiently robust to cause the American Society of Apheresis to include plasmapheresis as a treatment option for PANDAS, as well as for Sydenham chorea.
There are several different treatment approaches to dealing with athetosis. The most common methods are the use of drugs, surgical intervention, and retraining movements of the afflicted person. It is suggested that training a person to relearn movements can be helpful in select situations. Though, generally, this type of treatment will not work, in certain cases it can be found to be very helpful in treating the symptom of athetosis.
Drugs can also be used in the treatment of athetosis, however their collective effectiveness is not very convincing. There is not a single drug that is a standard among treatment. Many different medicines can be used, including:
- Artane
- Cogentin
- Curare, though not practical due to respiratory paralysis
- Tetrabenazine
- Haloperidol
- Thiopropazate
- Diazepam
Most instances of drug use where the symptoms seem to be lessened tend to be in more mild cases of athetosis.
Treatment by surgical intervention can obviously have the most immediate impact, again however, it is not a cure-all. In patients that have cerebral palsy as the cause of their athetosis, it has been demonstrated that a subthalamotomy tends to help relieve the extent of athetosis in approximately half of patients. Additionally, late 19th and early 20th century surgical accounts state that athetosis can be relieved by the removal of a part of the cerebral motor cortex or by cutting a part of the posterior spinal roots. Patients who undergo surgical treatment to relieve the athetosis often see significant improvement in the control of their limbs and digits. While surgery is often very beneficial in the short term and can produce near immediate results, in the long term it has been seen that its effects are not incredibly long lasting.
Due to the wide range of causes of camptocormia, there is no one treatment that suits all patients. In addition, there is no specific pharmacological treatment for primary BSS. The use of analgesic drugs depends entirely on the intensity of the back pain. Muscular-origin BSS can be alleviated by positive lifestyle changes, including physical activity, walking with a cane, a nutritious diet, and weight loss. Worsening of symptoms is possible but rare in occurrence.
Treatment of the underlying cause of the disease can alleviate the condition in some individuals with secondary BSS. Other treatment options include drugs, injections of botulinum toxin, electroconvulsive therapy, deep brain stimulation, and surgical correction. Unfortunately, many of the elderly individuals affected by the BSS are not treated surgically due to age-related physical ailments and the long postoperative recovery period.
Speech impairment is common in ADCP patients. Speech therapy is the treatment of communication diseases, including disorders in speech production, pitch, intonation, respiration and respiratory disorders. Exercises advised by a speech therapist or speech-language pathologist help patients to improve oral motor skills, restore speech, improve listening skills, and use communication aids or sign language if necessary.
For treatment guidelines, refer to the PANDAS Physicians Network. PPN’s goal is to help medical professionals understand, diagnose and treat PANS and PANDAS. The network provides research, diagnostic, and treatment tools. PPN Guidelines for Diagnostics and Therapeutics are developed by PPN committees and advisors from the top academic medical institutions in the United States. The members have worked with, treated, and studied the patients and the disorder. PANS and PANDAS are interdisciplinary disorders, so the relevant disciplines are represented on the PPN committees and special advisory council. Some of the disciplines include: Psychiatrists, Pediatric Neurologists, Immunologists, Microbiologists, Rheumatologists, Geneticists, Otolaryngologists, etc.
Articulation problems resulting from dysarthria are treated by speech language pathologists, using a variety of techniques. Techniques used depend on the effect the dysarthria has on control of the articulators. Traditional treatments target the correction of deficits in rate (of articulation), prosody (appropriate emphasis and inflection, affected e.g. by apraxia of speech, right hemisphere brain damage, etc.), intensity (loudness of the voice, affected e.g. in hypokinetic dysarthrias such as in Parkinson's), resonance (ability to alter the vocal tract and resonating spaces for correct speech sounds) and phonation (control of the vocal folds for appropriate voice quality and valving of the airway). These treatments have usually involved exercises to increase strength and control over articulator muscles (which may be flaccid and weak, or overly tight and difficult to move), and using alternate speaking techniques to increase speaker intelligibility (how well someone's speech is understood by peers). With the speech language pathologist, there are several skills that are important to learn; safe chewing and swallowing techniques, avoiding conversations when feeling tired, repeat words and syllables over and over in order to learn the proper mouth movements, and techniques to deal with the frustration while speaking. Depending on the severity of the dysarthria, another possibility includes learning how to use a computer or flip cards in order to communicate more effectively.
More recent techniques based on the principles of motor learning (PML), such as LSVT (Lee Silverman voice treatment) speech therapy and specifically LSVT may improve voice and speech function in PD. For Parkinson's, aim to retrain speech skills through building new generalised motor programs, and attach great importance to regular practice, through peer/partner support and self-management. Regularity of practice, and when to practice, are the main issues in PML treatments, as they may determine the likelihood of generalization of new motor skills, and therefore how effective a treatment is.
Augmentative and alternative communication (AAC) devices that make coping with a dysarthria easier include speech synthesis and text-based telephones. These allow people who are unintelligible, or may be in the later stages of a progressive illness, to continue to be able to communicate without the need for fully intelligible speech.
There are two sphincters in the oesophagus. They are normally contracted and they relax when one swallows so that food can pass through them going to the stomach. They then squeeze closed again to prevent regurgitation of the stomach contents. If this normal contraction becomes a spasm, these symptoms begin.
The medical treatment of essential tremor at the Movement Disorders Clinic at Baylor College of Medicine begins with minimizing stress and tremorgenic drugs along with recommending a restricted intake of beverages containing caffeine as a precaution, although caffeine has not been shown to significantly intensify the presentation of essential tremor. Alcohol amounting to a blood concentration of only 0.3% has been shown to reduce the amplitude of essential tremor in two-thirds of patients; for this reason it may be used as a prophylactic treatment before events during which one would be embarrassed by the tremor presenting itself. Using alcohol regularly and/or in excess to treat tremors is highly unadvisable, as there is a purported correlation between tremor and alcoholism. Alcohol is thought to stabilize neuronal membranes via potentiation of GABA receptor-mediated chloride influx. It has been demonstrated in essential tremor animal models that the food additive 1-octanol suppresses tremors induced by harmaline, and decreases the amplitude of essential tremor for about 90 minutes.
Two of the most valuable drug treatments for essential tremor are propranolol, a beta blocker, and primidone, an anticonvulsant. Propranolol is much more effective for hand tremor than head and voice tremor. Some beta-adrenergic blockers (beta blockers) are not lipid-soluble and therefore cannot cross the blood–brain barrier (propranolol being an exception), but can still act against tremors; this indicates that this drug’s mechanism of therapy may be influenced by peripheral beta-adrenergic receptors. Primidone’s mechanism of tremor prevention has been shown significantly in controlled clinical studies. The benzodiazepine drugs such as diazepam and barbiturates have been shown to reduce presentation of several types of tremor, including the essential variety. Controlled clinical trials of gabapentin yielded mixed results in efficacy against essential tremor while topiramate was shown to be effective in a larger double-blind controlled study, resulting in both lower Fahn-Tolosa-Marin tremor scale ratings and better function and disability as compared to placebo.
It has been shown in two double-blind controlled studies that injection of botulinum toxin into muscles used to produce oscillatory movements of essential tremors, such as forearm, wrist and finger flexors, may decrease the amplitude of hand tremor for approximately three months and that injections of the toxin may reduce essential tremor presenting in the head and voice. The toxin also may help tremor causing difficulty in writing, although properly adapted writing devices may be more efficient. Due to high incidence of side effects, use of botulinum toxin has only received a C level of support from the scientific community.
Deep brain stimulation toward the ventral intermediate nucleus of the thalamus and potentially the subthalamic nucleus and caudal zona incerta nucleus have been shown to reduce tremor in numerous studies. That toward the ventral intermediate nucleus of the thalamus has been shown to reduce contralateral and some ipsilateral tremor along with tremors of the cerebellar outflow, head, resting state and those related to hand tasks; however, the treatment has been shown to induce difficulty articulating thoughts (dysarthria), and loss of coordination and balance in long-term studies. Motor cortex stimulation is another option shown to be viable in numerous clinical trials.
There is no known cure for PSP and management is primarily supportive. PSP cases are often split into two subgroups, PSP-Richardson, the classic type, and PSP-Parkinsonism, where a short-term response to levodopa can be obtained. Dyskinesia is an occasional but rare complication of treatment. Amantadine is also sometimes helpful. After a few years the Parkinsonian variant tends to take on Richardson features. Other variants have been described. Botox can be used to treat neck dystonia and blephrospasm, but this can aggravate dysphagia.
Two studies have suggested that rivastigmine may help with cognitive aspects, but the authors of both studies have suggested a larger sampling be used. There is some evidence that the hypnotic zolpidem may improve motor function and eye movements, but only from small-scale studies.