Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no known cure for autism, although those with Asperger syndrome and those who have autism and require little-to-no support are more likely to experience a lessening of symptoms over time. The main goals of treatment are to lessen associated deficits and family distress, and to increase quality of life and functional independence. In general, higher IQs are correlated with greater responsiveness to treatment and improved treatment outcomes. Although evidence-based interventions for autistic children vary in their methods, many adopt a psychoeducational approach to enhancing cognitive, communication, and social skills while minimizing problem behaviors. It has been argued that no single treatment is best and treatment is typically tailored to the child's needs.
Intensive, sustained special education programs and behavior therapy early in life can help children acquire self-care, social, and job skills. Available approaches include applied behavior analysis, developmental models, structured teaching, speech and language therapy, social skills therapy, and occupational therapy. Among these approaches, interventions either treat autistic features comprehensively, or focus treatment on a specific area of deficit. Generally, when educating those with autism, specific tactics may be used to effectively relay information to these individuals. Using as much social interaction as possible is key in targeting the inhibition autistic individuals experience concerning person-to-person contact. Additionally, research has shown that employing semantic groupings, which involves assigning words to typical conceptual categories, can be benevficial in fostering learning.
There has been increasing attention to the development of evidence-based interventions for young children with ASD. Two theoretical frameworks outlined for early childhood intervention include applied behavioral analysis (ABA) and the developmental social-pragmatic model (DSP). Although ABA therapy has a strong evidence base, particularly in regard to early intensive home-based therapy. ABA's effectiveness may be limited by diagnostic severity and IQ of the person affected by ASD. The Journal of Clinical Child and Adolescent Psychology has deemed two early childhood interventions as “well-established”: individual comprehensive ABA, and focused teacher-implemented ABA combined with DSP.
Another evidence-based intervention that has demonstrated efficacy is a parent training model, which teaches parents how to implement various ABA and DSP techniques themselves. Various DSP programs have been developed to explicitly deliver intervention systems through at-home parent implementation.
A multitude of unresearched alternative therapies have also been implemented. Many have resulted in harm to autistic people and should not be employed unless proven to be safe.
In October 2015, the American Academy of Pediatrics (AAP) proposed new evidence-based recommendations for early interventions in ASD for children under 3. These recommendations emphasize early involvement with both developmental and behavioral methods, support by and for parents and caregivers, and a focus on both the core and associated symptoms of ASD.
The main goals when treating children with autism are to lessen associated deficits and family distress, and to increase quality of life and functional independence. In general, higher IQs are correlated with greater responsiveness to treatment and improved treatment outcomes. No single treatment is best and treatment is typically tailored to the child's needs. Families and the educational system are the main resources for treatment. Studies of interventions have methodological problems that prevent definitive conclusions about efficacy, however the development of evidence-based interventions has advanced in recent years. Although many psychosocial interventions have some positive evidence, suggesting that some form of treatment is preferable to no treatment, the methodological quality of systematic reviews of these studies has generally been poor, their clinical results are mostly tentative, and there is little evidence for the relative effectiveness of treatment options. Intensive, sustained special education programs and behavior therapy early in life can help children acquire self-care, social, and job skills, and often improve functioning and decrease symptom severity and maladaptive behaviors; claims that intervention by around age three years is crucial are not substantiated. Available approaches include applied behavior analysis (ABA), developmental models, structured teaching, speech and language therapy, social skills therapy, and occupational therapy. Among these approaches, interventions either treat autistic features comprehensively, or focalize treatment on a specific area of deficit. There is some evidence that early intensive behavioral intervention (EIBI), an early intervention model based on ABA for 20 to 40 hours a week for multiple years, is an effective treatment for some children with ASD. Two theoretical frameworks outlined for early childhood intervention include applied behavioral analysis (ABA) and developmental social pragmatic models (DSP). One interventional strategy utilizes a parent training model, which teaches parents how to implement various ABA and DSP techniques, allowing for parents to disseminate interventions themselves. Various DSP programs have been developed to explicitly deliver intervention systems through at-home parent implementation. Despite the recent development of parent training models, these interventions have demonstrated effectiveness in numerous studies, being evaluated as a probable efficacious mode of treatment.
Many medications are used to treat ASD symptoms that interfere with integrating a child into home or school when behavioral treatment fails. More than half of US children diagnosed with ASD are prescribed psychoactive drugs or anticonvulsants, with the most common drug classes being antidepressants, stimulants, and antipsychotics. Antipsychotics, such as risperidone and aripiprazole, have been found to be useful for treating irritability, repetitive behavior, and sleeplessness that often occurs with autism, however their side effects must be weighed against their potential benefits, and people with autism may respond atypically. There is scant reliable research about the effectiveness or safety of drug treatments for adolescents and adults with ASD. No known medication relieves autism's core symptoms of social and communication impairments. Experiments in mice have reversed or reduced some symptoms related to autism by replacing or modulating gene function, suggesting the possibility of targeting therapies to specific rare mutations known to cause autism.
Although 1p36 Deletion Syndrome can be debilitating in many ways, patients do respond to various treatments and therapies. These include the following:
American Sign Language: Because few individuals with Monosomy 1p36 develop complex speech, an alternate form of communication is critical to development. Most patients can learn basic signs to communicate their needs and wants. This also appears to reduce frustration and may reduce self-injurious tendencies. Children with hearing loss will often qualify for locally sponsored sign language classes.
Music Therapy: Music has been shown to aid children with 1p36 deletion in various developmental areas. It serves as an excellent auditory stimulus and can teach listening skills. Songs with actions help the child to develop coordination and motor skills.
Physical Therapy: Due to low muscle tone, patients with 1p36 Deletions take a great deal of time to learn to roll over, sit up, crawl and walk. However, regular physical therapy has shown to shorten the length of time needed to achieve each of those developmental milestones.
Occupational Therapy can be helpful to help children with oral motor and feeding difficulties (including dysphagia and transitioning to solid foods) as well as developmental delays in motor, social and sensory domains.
There is no known "cure" for PDD-NOS, but there are interventions that can have a positive influence. Early and intensive implementation of evidence-based practices and interventions are generally believed to improve outcomes. Most of these are individualized special education strategies rather than medical or pharmaceutical treatment; the best outcomes are achieved when a team approach among supporting individuals is utilized.
Some of the more common therapies and services include:
- Visual and environmental supports, visual schedules
- Applied behavior analysis
- Discrete trial instruction (part of applied behavior analysis)
- Social stories and comic strip conversations
- Physical and occupational therapy
To treat the trigonocephaly, expanding the distance between orbits using springs seems to work. It allows enough space for the brain to grow and it creates a normal horizontal axis of the orbits and supraorbital bar. The endoscopic surgery started to become popular since the early 90's, but it has some technical limitations (only strip cranictomy is possible). There have been few attempts to go beyond the limits.
Aesthetic outcomes of metopic surgery have been good. Surgery does not have a perfect outcome because there will most likely be minor irregularities. Sometimes reoperations are needed for the severe cases. Trying to hollow out the temporal, and the hypoterlorism are very hard to correct. The hypotelorism usually stays not corrected and in order to correct the temporal hollowing, a second operation is most likely needed.
Most patients suffering from KTS have epilepsy that is resistant to anti-epileptic agents. Some patients showed a partial response to treatment, but very few were able to stop their epilepsy through treatment. One case was responsive to treatment using Phenobartbital and vigabatrin which are both anti-epileptic agents. Spasticity can be treated with baclofen, but not all patients are responsive to the treatment.
There is currently no known treatment or cure for most (or perhaps all) causes of hypotonia, and objective manifestations can be lifelong. The outcome in any particular case of hypotonia depends largely on the nature of the underlying disease. In some cases, muscle tone improves over time, or the patient may learn or devise coping mechanisms that enable them to overcome the most disabling aspects of the disorder. However, hypotonia caused by cerebellar dysfunction or motor neuron diseases can be progressive and life-threatening.
Along with normal pediatric care, specialists who may be involved in the care of a child with hypotonia include developmental pediatricians (specialize in child development), neurologists, neonatologists (specialize in the care of newborns), geneticists, occupational therapists, physical therapists, speech therapists, orthopedists, pathologists (conduct and interpret biochemical tests and tissue analysis), and specialized nursing care.
If the underlying cause is known, treatment is tailored to the specific disease, followed by symptomatic and supportive therapy for the hypotonia. In very severe cases, treatment may be primarily supportive, such as mechanical assistance with basic life functions like breathing and feeding, physical therapy to prevent muscle atrophy and maintain joint mobility, and measures to try to prevent opportunistic infections such as pneumonia. Treatments to improve neurological status might involve such things as medication for a seizure disorder, medicines or supplements to stabilize a metabolic disorder, or surgery to help relieve the pressure from hydrocephalus (increased fluid in the brain).
The National Institute of Neurological Disorders and Stroke states that physical therapy can improve motor control and overall body strength in individuals with hypotonia. This is crucial to maintaining both static and dynamic postural stability, which is important since postural instability is a common problem in people with hypotonia. A physiotherapist can develop patient specific training programs to optimize postural control, in order to increase balance and safety. To protect against postural asymmetries the use of supportive and protective devices may be necessary. Physical therapists might use neuromuscular/sensory stimulation techniques such as quick stretch, resistance, joint approximation, and tapping to increase tone by facilitating or enhancing muscle contraction in patients with hypotonia. For patients who demonstrate muscle weakness in addition to hypotonia strengthening exercises that do not overload the muscles are indicated. Electrical Muscle Stimulation, also known as Neuromuscular Electrical Stimulation (NMES) can also be used to “activate hypotonic muscles, improve strength, and generate movement in paralyzed limbs while preventing disuse atrophy (p.498).” When using NMES it is important to have the patient focus on attempting to contract the muscle(s) being stimulated. Without such concentration on movement attempts, carryover to volitional movement is not feasible. NMES should ideally be combined with functional training activities to improve outcomes.
Occupational therapy can assist the patient with increasing independence with daily tasks through improvement of motor skills, strength, and functional endurance. Speech-language therapy can help with any breathing, speech, and/or swallowing difficulties the patient may be having. Therapy for infants and young children may also include sensory stimulation programs." A physical therapist may recommend an ankle/foot orthosis to help the patient compensate for weak lower leg muscles. Toddlers and children with speech difficulties may benefit greatly by using sign language.
Nutrition disorders and nutritional deficits may cause neurodevelopmental disorders, such as spina bifida, and the rarely occurring anencephaly, both of which are neural tube defects with malformation and dysfunction of the nervous system and its supporting structures, leading to serious physical disability and emotional sequelae. The most common nutritional cause of neural tube defects is folic acid deficiency in the mother, a B vitamin usually found in fruits, vegetables, whole grains, and milk products. (Neural tube defects are also caused by medications and other environmental causes, many of which interfere with folate metabolism, thus they are considered to have multifactorial causes.) Another deficiency, iodine deficiency, produces a spectrum of neurodevelopmental disorders ranging from mild emotional disturbance to severe mental retardation. (see also cretinism)
Excesses in both maternal and infant diets may cause disorders as well, with foods or food supplements proving toxic in large amounts. For instance in 1973 K.L. Jones and D.W. Smith of the University of Washington Medical School in Seattle found a pattern of "craniofacial, limb, and cardiovascular defects associated with prenatal onset growth deficiency and developmental delay" in children of alcoholic mothers, now called fetal alcohol syndrome, It has significant symptom overlap with several other entirely unrelated neurodevelopmental disorders. It has been discovered that iron supplementation in baby formula can be linked to lowered I.Q. and other neurodevelopmental delays.
Currently, the only effective treatment for encephaloceles is reparative surgery, generally performed during infancy. The extent to which it can be corrected depends on the location and size of the encephaloceles; however, large protrusions can be removed without causing major disability. Surgery repositions the bulging area back into the skull, removes the protrusions, and corrects the deformities, typically relieving pressure that can delay normal brain development. Occasionally, shunts are placed to drain excess cerebrospinal fluid from the brain.
The goals of treatment include:
- closure of open skin defects to prevent infection and desiccation of brain tissue
- removal of nonfunctional extracranial cerebral tissue with water-tight closure of the dura
- total craniofacial reconstruction with particular emphasis on avoiding the long-nose deformity (nasal elongation that results from depression of the cribiform plate and nasal placode). Without proper management, the long-nose deformity can be more obvious after repair.
High quality evidence is lacking for cranial remolding orthosis (baby helmet) for the positional condition and use for this purpose is controversial. If conservative treatment is unsuccessful helmets may help to correct abnormal head shapes. These helmets are used to treat deformational plagiocephaly, brachycephaly, scaphocephaly and other head shape deformities in infants 3–18 months of age by gently allowing the head shape to grow back into a normal shape. This type of treatment has been used for severe deformations.
Developmental disability is a diverse group of chronic conditions that are due to mental or physical impairments. Developmental disabilities cause individuals living with them many difficulties in certain areas of life, especially in "language, mobility, learning, self-help, and independent living". Developmental disabilities can be detected early on, and do persist throughout an individual's lifespan. Developmental disability that affects all areas of a child's development is sometimes referred to as global developmental delay.
Most common developmental disabilities:
- Down syndrome is a condition in which people are born with an extra copy of chromosome 21. Normally, a person is born with two copies of chromosome 21. However, if they are born with Down syndrome, they have an extra copy of this chromosome. This extra copy affects the development of the body and brain, causing physical and mental challenges for the individual.
- Fragile X syndrome (FXS) is thought to cause autism and intellectual disability, usually among boys.
- Pervasive developmental disorders (PDD) are a group of developmental disabilities that can cause significant social, communication and behavioral challenges.
- Fetal alcohol spectrum disorders (FASD) are a group of conditions that can occur in a person whose mother drank alcohol during pregnancy.
- Cerebral palsy (CP) is a group of disorders that affect a person’s ability to move and maintain balance and posture. CP is the most common motor disability in childhood.
- Intellectual disability, also (sometimes proscriptively) known as mental retardation, is defined as an IQ below 70 along with limitations in adaptive functioning and onset before the age of 18 years.
After the initial diagnosis of speech delay, a hearing test will be administered to ensure that hearing loss or deafness is not an underlying cause of the delay. If a child has successfully completed the hearing test, the therapy or therapies used will be determined. There are many therapies available for children that have been diagnosed with a speech delay, and for every child, the treatment and therapies needed vary with the degree, severity, and cause of the delay. While speech therapy is the most common form of intervention, many children may benefit from additional help from occupational and physical therapies as well. Physical and occupational therapies can be used for a child that is suffering from speech delay due to physical malformations and children that have also been diagnosed with a developmental delay such as autism or a language processing delay. Children that have been identified with hearing loss can be taught simple sign language to build and improve their vocabulary in addition to attending speech therapy.
The parents of a delayed child are the first and most important tool in helping overcome the speech delay. The parent or caregiver of the child can provide the following activities at home, in addition to the techniques suggested by a speech therapist, to positively influence the growth of speech and vocabulary:
- Reading to the child regularly
- Use of questions and simple, clear language
- Positive reinforcement in addition to patience
For children that are suffering from physical disorder that is causing difficulty forming and pronouncing words, parents and caregivers suggest using and introducing different food textures to exercise and build jaw muscles while promoting new movements of the jaw while chewing. Another less studied technique used to combat and treat speech delay is a form of therapy using music to promote and facilitate speech and language development. It is important to understand that music therapy is in its infancy and has yet to be thoroughly studied and practiced on children suffering from speech delays and impediments.
Metabolic disorders in either the mother or the child can cause neurodevelopmental disorders. Two examples are diabetes mellitus (a multifactorial disorder) and phenylketonuria (an inborn error of metabolism). Many such inherited diseases may directly affect the child's metabolism and neural development but less commonly they can indirectly affect the child during gestation. (See also teratology).
In a child, type 1 diabetes can produce neurodevelopmental damage by the effects of excess or insufficient glucose. The problems continue and may worsen throughout childhood if the diabetes is not well controlled. Type 2 diabetes may be preceded in its onset by impaired cognitive functioning.
A non-diabetic fetus can also be subjected to glucose effects if its mother has undetected gestational diabetes. Maternal diabetes causes excessive birth size, making it harder for the infant to pass through the birth canal without injury or it can directly produce early neurodevelopmental deficits. Usually the neurodevelopmental symptoms will decrease in later childhood.
Phenylketonuria, also known as PKU, can induce neurodevelopmental problems and children with PKU require a strict diet to prevent mental retardation and other disorders. In the maternal form of PKU, excessive maternal phenylalanine can be absorbed by the fetus even if the fetus has not inherited the disease. This can produce mental retardation and other disorders.
Global developmental delay is an umbrella term used when children are significantly delayed in their cognitive and physical development. There is usually a more specific condition which causes this delay, such as Fragile X syndrome or other chromosonal abnormalities. However, it is sometimes difficult to identify this underlying condition.
Other terms associated with this condition are failure to thrive (which focuses on lack of weight gain and physical development), intellectual disability (which focuses on intellectual deficits and the changes they cause to development) and developmental disability (which can refer to both intellectual and physical disability altering development).
The causes of developmental disabilities are varied and remain unknown in a large proportion of cases. Even in cases of known etiology the line between "cause" and "effect" is not always clear, leading to difficulty in categorizing causes.
Genetic factors have long been implicated in the causation of developmental disabilities. There is also a large environmental component to these conditions, and the relative contributions of nature versus nurture have been debated for decades.
Current theories on causation focus on genetic factors, and over 1,000 known genetic conditions include developmental disabilities as a symptom.
Developmental disabilities affect between 1 and 2% of the population in most western countries, although many government sources acknowledge that statistics are flawed in this area. The worldwide proportion of people with developmental disabilities is believed to be approximately 1.4%. It is twice as common in males as in females, and some researchers have found that the prevalence of mild developmental disabilities is likely to be higher in areas of poverty and deprivation, and among people of certain ethnicities.
The condition may improve to some extent as the baby grows, but in some cases, treatment can improve the shape of a baby’s head.
There is no cure for this condition. Treatment is supportive and varies depending on how symptoms present and their severity. Some degree of developmental delay is expected in almost all cases of M-CM, so evaluation for early intervention or special education programs is appropriate. Rare cases have been reported with no discernible delay in academic or school abilities.
Physical therapy and orthopedic bracing can help young children with gross motor development. Occupational therapy or speech therapy may also assist with developmental delays. Attention from an orthopedic surgeon may be required for leg length discrepancy due to hemihyperplasia.
Children with hemihyperplasia are thought to have an elevated risk for certain types of cancers. Recently published management guidelines recommend regular abdominal ultrasounds up to age eight to detect Wilms' tumor. AFP testing to detect liver cancer is not recommended as there have been no reported cases of hepatoblastoma in M-CM patients.
Congenital abnormalities in the brain and progressive brain overgrowth can result in a variety of neurological problems that may require intervention. These include hydrocephalus, cerebellar tonsillar herniation (Chiari I), seizures and syringomyelia. These complications are not usually congenital, they develop over time often presenting complications in late infancy or early childhood, though they can become problems even later. Baseline brain and spinal cord MRI imaging with repeat scans at regular intervals is often prescribed to monitor the changes that result from progressive brain overgrowth.
Assessment of cardiac health with echocardiogram and EKG may be prescribed and arrhythmias or abnormalities may require surgical treatment.
A number of features found with Nasodigitoacoustic syndrome can be managed or treated. Sensorineural hearing loss in humans may be caused by a loss of hair cells (sensory receptors in the inner ear that are associated with hearing). This can be hereditary and/or within a syndrome, as is the case with nasodigitoacoustic syndrome, or attributed to infections such as viruses. For the management of sensorineural hearing loss, hearing aids have been used. Treatments, depending upon the cause and severity, may include a pharmacological approach (i.e., the use of certain steroids), or surgical intervention, like a cochlear implant.
Pulmonary, or pulmonic stenosis is an often congenital narrowing of the pulmonary valve; it can be present in nasodigitoacoustic-affected infants. Treatment of this cardiac abnormality can require surgery, or non-surgical procedures like balloon valvuloplasty (widening the valve with a balloon catheter).
There is currently no cure, but some symptoms may be treated such as neuroleptics for the psychiatric problems.
The only treatment for MWS is only symptomatic, with multidisciplinary management
The prognosis of this condition is generally considered good with the appropriate treatment. Management of Legius syndrome is done via the following:
- Physical therapy
- Speech therapy
- Pharmacologic therapy(e.g.Methylphenidate AHHD)
Since the symptoms caused by this disease are present at birth, there is no “cure.” The best cure that scientists are researching is awareness and genetic testing to determine risk factors and increase knowledgeable family planning. Prevention is the only option at this point in time for a cure.
It is recommended that women who may become pregnant take 400 micrograms of folic acid daily.
CTD is difficult to treat because the actual transporter responsible for transporting creatine to the brain and muscles is defective. Studies in which oral creatine monohydrate supplements were given to patients with CTD found that patients did not respond to treatment. However, similar studies conducted in which patients that had GAMT or AGAT deficiency were given oral creatine monohydrate supplements found that patient’s clinical symptoms improved. Patients with CTD are unresponsive to oral creatine monohydrate supplements because regardless of the amount of creatine they ingest, the creatine transporter is still defective, and therefore creatine is incapable of being transported across the BBB. Given the major role that the BBB has in the transport of creatine to the brain and unresponsiveness of oral creatine monohydrate supplements in CTD patients, future research will focus on working with the BBB to deliver creatine supplements. However, given the limited number of patients that have been identified with CTD, future treatment strategies must be more effective and efficient when recognizing individuals with CTD.