Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The first line management of gingival overgrowth is improved oral hygiene, ensuring that the irritative plaque is removed from around the necks of the teeth and gums. Situations in which the chronic inflammatory gingival enlargement include significant fibrotic components that do not respond to and undergo shrinkage when exposed to scaling and root planing are treated with surgical removal of the excess tissue, most often with a procedure known as gingivectomy.
In DIGO, improved oral hygiene and plaque control is still important to help reduce any inflammatory component that may be contributing to the overgrowth. Reversing and preventing gingival enlargement caused by drugs is as easy as ceasing drug therapy or substituting to another drug. However, this is not always an option; in such a situation, alternative drug therapy may be employed, if possible, to avoid this deleterious side effect. In the case of immunosuppression, tacrolimus is an available alternative which results in much less severe gingival overgrowth than cyclosporin, but is similarly as nephrotoxic. The dihydropyridine derivative isradipidine can replace nifedipine for some uses of calcium channel blocking and does not induce gingival overgrowth.
Treatment is by surgical excision (complete removal) of the fibrous tissue overgrowth and addressing the causative factor to prevent recurrence of the lesion. Other sources suggest that surgical excision may not be required in all cases. Common techniques for removal of the excess tissue include traditional removal with a surgical scalpel, electrical scalpel, or laser excision with a laser scalpel, e.g. a carbon dioxide laser, , Neodymium-YAG laser, or diode laser. The poorly fitting denture can be adapted to fit better (a "reline") or a new denture constructed. Alternatively, the section of flange that is sharp/over-extended can be smoothed and reduced with a drill.
Anti-tumour necrosis factor α antagonists (e.g. infliximab)
Dietary restriction of a particular suspected or proven antigen may be involved in the management of OFG, such as cinnamon or benzoate-free diets.
If there is persistent continuation of inflammation and bleeding, a prescription of antiplaque rinse would be useful.
The focus of treatment is to remove plaque. Therapy is aimed at the reduction of oral bacteria and may take the form of regular periodic visits to a dental professional together with adequate oral hygiene home care. Thus, several of the methods used in the prevention of gingivitis can also be used for the treatment of manifest gingivitis, such as scaling, root planing, curettage, mouth washes containing chlorhexidine or hydrogen peroxide, and flossing. Interdental brushes also help remove any causative agents.
Powered toothbrushes work better than manual toothbrushes in reducing the disease.
The active ingredients that "reduce plaque and demonstrate effective reduction of gingival inflammation over a period of time" are triclosan, chlorhexidine digluconate, and a combination of thymol, menthol, eucalyptol, and methyl salicylate. These ingredients are found in toothpaste and mouthwash. Hydrogen peroxide was long considered a suitable over-the-counter agent to treat gingivitis. There has been evidence to show the positive effect on controlling gingivitis in short-term use. A study indicates the fluoridated hydrogen peroxide-based mouth rinse can remove teeth stain and reduce gingivitis.
Based on a limited evidence, mouthwashes with essential oils may also be useful, as they contain ingredients with anti-inflammtory properties, such as thymol, menthol and eucalyptol.
The bacteria that causes gingivitis can be controlled by using an oral irrigator daily with a mouthwash containing an antibiotic. Either amoxicillin, cephalexin, or minocycline in 16 ounces of a non-alcoholic fluoride mouthwash is an effective mixture.
Overall, intensive oral hygiene care has been shown to improve gingival health in individuals with well-controlled type 2 diabetes. Periodontal destruction is also slowed down due to the extensive oral care. Intensive oral hygiene care (oral health education plus supra-gingival scaling) without any periodontal therapy improves gingival health, and may prevent progression of gingivitis in well-controlled diabetes.
Treatment options include antibiotic therapy (not a permanent solution), endodontic (root canal) therapy, or extraction.
This type of gingival enlargement is sometimes termed "drug induced gingival enlargement" or "drug influenced gingival enlargement", abbreviated to "DIGO". Gingival enlargement may also be associated with the administration of three different classes of drugs, all producing a similar response: Gingival overgrowth is a common side effect of phenytoin, termed "Phenytoin-induced gingival overgrowth" (PIGO).
- anticonvulsants (such as phenytoin, phenobarbital, lamotrigine, vigabatrin, ethosuximide, topiramate and primidone NOT common for valproate)
- calcium channel blockers (antihypertensives such as nifedipine, amlodipine, and verapamil). The dihydropyridine derivative isradipidine can replace nifedipine and does not induce gingival overgrowth.
- cyclosporine, an immunosuppresant.
Of all cases of DIGO, about 50% are attributed to phenytoin, 30% to cyclosporins and the remaining 10-20% to calcium channel blockers.
Drug-induced enlargement has been associated with a patient's genetic predisposition, and its association with inflammation is debated. Some investigators assert that underlying inflammation is necessary for the development of drug-induced enlargement, while others purport that the existing enlargement induced by the drug effect compounds plaque retention, thus furthering the tissue response. Careful attention to oral hygiene may reduce the severity of gingival hyperplasia. In most cases, discontinuing the culprit drug resolves the hyperplasia.
Long term randomized clinical trials need to be conducted to determine if regular routine scaling and polishing is clinically effective for reducing the risk of chronic periodontitis in healthy adults.
Lasers are increasingly being used in treatments for chronic periodontitis. However, there is some controversy over their use:
"No consistent evidence supports the efficacy of laser treatment as an adjunct to non-surgical periodontal treatment in adults with chronic periodontitis."
If cause-specific measures are insufficient, soft-tissue graft surgery may be used to create more gingiva. The tissue used may be autologous tissue from another site in the patient's mouth, or it can be freeze-dried tissue products or synthetic membranes. New research is focused on using stem cells to culture the patients' own gums to replace receded gums.
This disease has not been shown to be life-threatening or the cause of death in patients. However, treatment is necessary to maintain a healthy lifestyle.
Chemical antimicrobials may be used by the clinician to help reduce the bacterial load in the diseased pocket.
"Among the locally administered adjunctive antimicrobials, the most positive results occurred for tetracycline, minocycline, metronidazole, and chlorhexidine. Adjunctive local therapy generally reduced PD levels...Whether such improvements, even if statistically significant, are clinically meaningful remains a question."
Minocycline is typically delivered via slim syringe applicators.
Chlorhexidine impregnated chips are also available.
Hydrogen peroxide is a naturally occurring antimicrobial that can be delivered directly to the gingival sulcus or periodontal pocket using a custom formed medical device called a Perio Tray. [Title = Custom Tray Application of Peroxide Gel as an Adjunct to Scaling and Root Planing in the Treatment of Periodontitis:
A Randomized, Controlled Three-Month Clinical Trial J Clin Dent 2012;23:48–56.]
Hydrogen peroxide gel was demonstrated to be effective in controlling the bacteria biofilm [Subgingival Delivery of Oral Debriding Agents: A Proof of Concept J Clin Dent 2011;22:149–158] The research shows that a direct application of hydrogen peroxide gel killed virtually all of the bacterial biofilm, was directly and mathematically delivered up to 9mm into periodontal pockets.
Since this condition is generally agreed upon to be hereditary, nothing can be done to prevent HGF. However, in some cases where it can develop as a result of rare multi-system syndromes, such as: Zimmerman-Laband, Jones, Ramon Syndrome, Rutherford Syndrome, Juvenile Hyaline Fibromatosis, Systemic Infantile Hyalinosis, and Mannosidosis, it is best for one to simply monitors the possible progression for HGF with regular dental check-ups.
If the patient's disease is treated by means of surgery, it is recommended that the patient undergoes post-surgical therapies for maintenance and periodic monitoring of gums for the sake of the possibility of re-occurrence of HGF.
If the causative factor persists, tissue will become more fibrous over time.
Gingivitis can be prevented through regular oral hygiene that includes daily brushing and flossing. Hydrogen peroxide, saline, alcohol or chlorhexidine mouth washes may also be employed. In a 2004 clinical study, the beneficial effect of hydrogen peroxide on gingivitis has been highlighted.
Rigorous plaque control programs along with periodontal scaling and curettage also have proved to be helpful, although according to the American Dental Association, periodontal scaling and root planing are considered as a treatment for periodontal disease, not as a preventive treatment for periodontal disease. In a 1997 review of effectiveness data, the U.S. Food and Drug Administration (FDA) found clear evidence showing that toothpaste containing triclosan was effective in preventing gingivitis.
Most alternative "at-home" gum disease treatments involve injecting antimicrobial solutions, such as hydrogen peroxide, into periodontal pockets via slender applicators or oral irrigators. This process disrupts anaerobic micro-organism colonies and is effective at reducing infections and inflammation when used daily. A number of other products, functionally equivalent to hydrogen peroxide, are commercially available, but at substantially higher cost. However, such treatments do not address calculus formations, and so are short-lived, as anaerobic microbial colonies quickly regenerate in and around calculus.
Doxycycline may be given alongside the primary therapy of scaling (see § initial therapy). Doxycycline has been shown to improve indicators of disease progression (namely probing depth and attachment level). Its mechanism of action involves inhibition of matrix metalloproteinases (such as collagenase), which degrade the teeth's supporting tissues (periodontium) under inflammatory conditions. To avoid killing beneficial oral microbes, only small doses of doxycycline (20 mg) are used.
Local application of statin may be useful.
Depending on the shape of the gum recession and the levels of bone around the teeth, areas of gum recession can be regenerated with new gum tissue using a variety of gum grafting "periodontal plastic surgery" procedures performed by a specialist in periodontics (a periodontist). These procedures are typically completed under local anesthesia with or without conscious sedation, as the patient prefers. This may involve repositioning of adjacent gum tissue to cover the recession (called a pedicle graft) or use of a free graft of gingival or connective tissue from the roof of the mouth (called a "free gingival graft" or a Subepithelial connective tissue graft). Alternatively, a material called acellular dermal matrix (processed donated human skin allograft) may be used instead of tissue from the patient's own palate.
Treatment for TRs is limited to tooth extraction because the lesion is progressive. Amputation of the tooth crown without root removal has also been advocated in cases demonstrated on a radiograph to be type 2 resorption without associated periodontal or endodontic disease because the roots are being replaced by bone. However, X-rays are recommended prior to this treatment to document root resorption and lack of the periodontal ligament.
Tooth restoration is not recommended because resorption of the tooth will continue underneath the restoration. Use of alendronate has been studied to prevent TRs and decrease progression of existing lesions.
An important factor is whether the involved tooth is to be extracted or retained. Although the pulp is usually still vital, a history of recurrent periodontal abscesses and significantly compromised periodontal support indicate that the prognosis for the tooth is poor and it should be removed.
The initial management of a periodontal abscess involves pain relief and control of the infection. The pus needs to be drained, which helps both of these aims. If the tooth is to be removed, drainage will occur via the socket. Otherwise, if pus is already discharging from the periodontal pocket, this can be encouraged by gentle irrigation and scaling of the pocket whilst massaging the soft tissues. If this does not work, incision and drainage is required, as described in Dental abscess#Treatment.
Antibiotics are of secondary importance to drainage, which if satisfactory renders antibiotics unnecessary. Antibiotics are generally reserved for severe infections, in which there is facial swelling, systemic upset and elevated temperature. Since periodontal abscesses frequently involve anaerobic bacteria, oral antibiotics such as amoxicillin, clindamycin (in penicillin allergy or pregnancy) and/or metronidazole are given. Ideally, the choice of antibiotic is dictated by the results of microbiological culture and sensitivity testing of a sample of the pus aspirated at the start of any treatment, but this rarely occurs outside the hospital setting.
Other measures that are taken during management of the acute phase might include reducing the height of the tooth with a dental drill, so it no longer contacts the opposing tooth when biting down; and regular use of hot salt water mouth washes (antiseptic and encourages further drainage of the infection).
The management following the acute phase involves removing any residual infection, and correcting the factors that lead to the formation of the periodontal abscess. Usually, this will be therapy for periodontal disease, such as oral hygiene instruction and periodontal scaling.
The cornerstone of successful periodontal treatment starts with establishing excellent oral hygiene. This includes twice-daily brushing with daily flossing. Also, the use of an interdental brush is helpful if space between the teeth allows. For smaller spaces, products such as narrow picks with soft rubber bristles provide excellent manual cleaning. Persons with dexterity problems, such as arthritis, may find oral hygiene to be difficult and may require more frequent professional care and/or the use of a powered toothbrush. Persons with periodontitis must realize it is a chronic inflammatory disease and a lifelong regimen of excellent hygiene and professional maintenance care with a dentist/hygienist or periodontist is required to maintain affected teeth.
Preventing exposure to the causative antigen leads to resolution of the condition. Tacrolimus or clobetasol propionate have also been used to treat plasma cell cheilitis.
Treatment includes irrigation and debridement of necrotic areas (areas of dead and/or dying gum tissue), oral hygiene instruction and the uses of mouth rinses and pain medication. If there is systemic involvement, then oral antibiotics may be given, such as metronidazole. As these diseases are often associated with systemic medical issues, proper management of the systemic disorders is appropriate.
If the aetiology of abrasion is due to habitual behaviours, the discontinuation and change of habit is critical in the prevention of further tooth loss. The correct brushing technique is pivotal and involves a gentle scrub technique with small horizontal movements with an extra-soft/soft bristle brush. Excessive lateral force can be corrected by holding the toothbrush in a pen grasp or by using the non-dominant hand to brush. If abrasion is the result of an ill-fitting dental appliance, this should be corrected or replaced by a dental practitioner and should not be attempted in a home setting.
In order for successful treatment of abrasion to occur, the aetiology first needs to be identified. The most accurate way of doing so is completing a thorough medical, dental, social and diet history. All aspects needs to be investigated as in many cases the cause of abrasion can be multi-factorial. Once a definitive diagnosis is completed the appropriate treatment can commence.
Treatment for abrasion can present in varying difficulties depending on the current degree or progress caused by the abrasion. Abrasion often presents in conjunction with other dental conditions such as attrition, decay and erosion however the below treatment is for abrasion alone. Successful treatment focuses on the prevention and progression on the condition and modifies the current habit/s instigating the condition.
All impacted teeth, unless otherwise contraindicated, are considered for surgical removal. Thus, dental extractions will often take place. The type of extraction (simple or surgical) often depends on the location of the teeth.
In some cases, for aesthetic purposes, a surgeon may wish to expose the canine. This may be achieved through open or closed exposure. Studies show no advantage of one method over another.
Treatment usually involves surgical removal of the lesion down to the bone. If there are any adjacent teeth, they are cleaned thoroughly to remove any possible source of irritation. Recurrence is around 16%.