Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is currently no known pharmacological treatment to hereditary motor and sensory neuropathies. However, the majority of people with these diseases are able to walk and be self-sufficient. Some methods of relief for the disease include physical therapy, stretching, braces, and sometimes orthopedic surgery. Since foot disorders are common with neuropathy disorders precautions must be taken to strengthen these muscles and use preventative care and physical therapy to prevent injury and deformities.
Gene-based therapies for patients with HSAN I are not available to date, hence supportive care is the only treatment available for the patients. Ulcero-mutilating complications are the most serious, prominent, and leading diagnostic features in HSAN I. Since the complications mimic foot ulcers caused by diabetic neuropathy, the treatment for foot ulcers and infections can follow the guidelines given for diabetic foot care which starts with early and accurate counseling of patients about risk factors for developing foot ulcerations. Orthopedic care and the use of well fitting shoes without pressure points should also be included. Recently, the treatment of the foot complications has reached an efficient level allowing treatment on an outpatient basis. Early treatment of the foot complications often avoids hospitalization and, in particular, amputations. In sum, the principles of the treatment are removal of pressure to the ulcers, eradication of infection, and specific protective footwear afterwards.
Chlorambucil is a chemotherapy drug normally used to treat leukemia as it is often used as an immunosuppressant drug, and prednisone is a steroid that has also been found to be particularly effective as an immunosuppressant. This combination of drugs has minimal to no benefits in most patients, but a small number do see small improvements such as decreased tremors. This combination has not been very effective in more severe cases, though, and is not considered a long term therapy.
While immunotherapy works for some patients in relieving minor symptoms, overall most conventional therapies using steroids, immunosuppressants, chemotherapy, and intravenous immunoglobulin therapies have not helped most patients. This has created a need for newer and more novel therapies to be developed.
If patients with HSAN I receive appropriate treatment and counseling, the prognosis is good. Early treatment of foot infections may avoid serious complications. Nevertheless, the complications are manageable, thus allowing an acceptable quality of life. The disease progresses slowly and does not influence the life expectancy if signs and symptoms are properly treated.
No specific treatment is known that would prevent, slow, or reverse HSP. Available therapies mainly consist of symptomatic medical management and promoting physical and emotional well-being. Therapeutics offered to HSP patients include:
- Baclofen – a voluntary muscle relaxant to relax muscles and reduce tone. This can be administered orally or intrathecally. (Studies in HSP )
- Tizanidine – to treat nocturnal or intermittent spasms (studies available )
- Diazepam and clonazepam – to decrease intensity of spasms
- Oxybutynin chloride – an involuntary muscle relaxant and spasmolytic agent, used to reduce spasticity of the bladder in patients with bladder control problems
- Tolterodine tartate – an involuntary muscle relaxant and spasmolytic agent, used to reduce spasticity of the bladder in patients with bladder control problems
- Botulinum toxin – to reduce muscle overactivity (existing studies for HSP patients)
- Antidepressants (such as selective serotonin re-uptake inhibitors, tricyclic antidepressants and monoamine oxidase inhibitors) – for patients experiencing clinical depression
- Physical therapy – to restore and maintain the ability to move; to reduce muscle tone; to maintain or improve range of motion and mobility; to increase strength and coordination; to prevent complications, such as frozen joints, contractures, or bedsores.
Multifocal motor neuropathy is normally treated by receiving intravenous immunoglobulin (IVIG), which can in many cases be highly effective, or immunosuppressive therapy with cyclophosphamide or rituximab. Steroid treatment (prednisone) and plasmapheresis are no longer considered to be useful treatments; prednisone can exacerbate symptoms. IVIg is the primary treatment, with about 80% of patients responding, usually requiring regular infusions at intervals of 1 week to several months. Other treatments are considered in case of lack of response to IVIg, or sometimes because of the high cost of immunoglobulin. Subcutaneous immunoglobulin is under study as a less invasive, more-convenient alternative to IV delivery.
A range of medications that act on the central nervous system has been found to be useful in managing neuropathic pain. Commonly used treatments include tricyclic antidepressants (such as nortriptyline or amitriptyline), the serotonin-norepinephrine reuptake inhibitor (SNRI) medication duloxetine, and antiepileptic therapies such as gabapentin, pregabalin, or sodium valproate. Few studies have examined whether nonsteroidal anti-inflammatory drugs are effective in treating peripheral neuropathy.
Symptomatic relief for the pain of peripheral neuropathy may be obtained by application of topical capsaicin. Capsaicin is the factor that causes heat in chili peppers. The evidence suggesting that capsaicin applied to the skin reduces pain for peripheral neuropathy is of moderate to low quality and should be interpreted carefully before using this treatment option. Local anesthesia often is used to counteract the initial discomfort of the capsaicin. Some current research in animal models has shown that depleting neurotrophin-3 may oppose the demyelination present in some peripheral neuropathies by increasing myelin formation.
High-quality evidence supports the use of cannabis for neuropathic pain.
Transcutaneous electrical nerve stimulation therapy may be effective and safe in the treatment of diabetic peripheral neuropathy. A recent review of three trials involving 78 patients found some improvement in pain scores after 4 and 6, but not 12 weeks of treatment and an overall improvement in neuropathic symptoms at 12 weeks. Another review of four trials found significant improvement in pain and overall symptoms, with 38% of patients in one trial becoming asymptomatic. The treatment remains effective even after prolonged use, but symptoms return to baseline within a month of cessation of treatment.
In the treatment of polyneuropathies one must ascertain and manage the cause, among management activities are: weight decrease, use of a walking aid, and occupational therapist assistance. Additionally BP control in those with diabetes is helpful, while intravenous immunoglobulin is used for multifocal motor neuropathy.
According to Lopate, et al., methylprednisolone is a viable treatment for chronic inflammatory demyelinative polyneuropathy (which can also be treated with intravenous immunoglobulin) The author(s) also indicate that prednisone has greater adverse effects in such treatment, as opposed to intermittent (high-doses) of the aforementioned medication.
According to Wu, et al., in critical illness polyneuropathy supportive and preventive therapy are important for the affected individual, as well as, avoiding (or limiting) corticosteroids.
First-line treatment for CIDP is currently intravenous immunoglobulin (IVIG) and other treatments include corticosteroids (e.g. prednisone), and plasmapheresis (plasma exchange) which may be prescribed alone or in combination with an immunosuppressant drug. Recent controlled studies show subcutaneous immunoglobin (SCIG) appears to be as effective for CIDP treatment as IVIG in most patients, and with fewer systemic side effects.
IVIG and plasmapheresis have proven benefit in randomized, double-blind, placebo-controlled trials. Despite less definitive published evidence of efficacy, corticosteroids are considered standard therapies because of their long history of use and cost effectiveness. IVIG is probably the first-line CIDP treatment, but is extremely expensive. For example, in the U.S., a single 65 g dose of Gamunex brand in 2010 might be billed at the rate of $8,000 just for the immunoglobulin—not including other charges such as nurse administration. Gamunex brand IVIG is the only U.S. FDA approved treatment for CIDP, as in 2008 Talecris, the maker of Gamunex, received orphan drug status for this drug for the treatment of CIDP.
Immunosuppressive drugs are often of the cytotoxic (chemotherapy) class, including rituximab (Rituxan) which targets B cells, and cyclophosphamide, a drug which reduces the function of the immune system. Ciclosporin has also been used in CIDP but with less frequency as it is a newer approach. Ciclosporin is thought to bind to immunocompetent lymphocytes, especially T-lymphocytes.
Non-cytotoxic immunosuppressive treatments usually include the anti-rejection transplant drugs azathioprine (Imuran/Azoran) and mycophenolate mofetil (Cellcept). In the U.S., these drugs are used as "off-label" treatments for CIDP, meaning that their use here is accepted by the FDA, but that CIDP treatment is not explicitly indicated or approved in the drug literature. Before azathioprine is used, the patient should first have a blood test that ensures that azathioprine can safely be used.
Anti-thymocyte globulin (ATG), an immunosuppressive agent that selectively destroys T lymphocytes is being studied for use in CIDP. Anti-thymocyte globulin is the gamma globulin fraction of antiserum from animals that have been immunized against human thymocytes. It is a polyclonal antibody.
Although chemotherapeutic and immunosuppressive agents have shown to be effective in treating CIDP, significant evidence is lacking, mostly due to the heterogeneous nature of the disease in the patient population in addition to the lack of controlled trials.
A review of several treatments found that azathioprine, interferon alpha and methotrexate were not effective. Cyclophosphamide and rituximab seem to have some response. Mycophenolate mofetil may be of use in milder cases. Immunoglobulin and steroids are the first line choices for treatment. Rarely bone marrow transplantation has been performed.
Physical therapy and occupational therapy may improve muscle strength, activities of daily living, mobility, and minimize the shrinkage of muscles and tendons and distortions of the joints.
Currently there is no effective therapy for dominant optic atrophy, and consequently, these patients are simply monitored for changes in vision by their eye-care professional. Children of patients should be screened regularly for visual changes related to dominant optic atrophy. Research is underway to further characterize the disease so that therapies may be developed.
Idebenone is a short-chain benzoquinone that interacts with the mitochondrial electron transport chain to enhance cellular respiration. When used in individuals with LHON, it is believed to allow electrons to bypass the dysfunctional complex I. Successful treatment using idebenone was initially reported in a small number of patients.
Two large-scale studies have demonstrated the benefits of idebenone. The Rescue of Hereditary Optic Disease Outpatient Study (RHODOS) evaluated the effects of idebenone in 85 patients with LHON who had lost vision within the prior five years. In this study, the group taking idebenone 900 mg per day for 24 weeks showed a slight improvement in visual acuity compared to the placebo group, though this difference was not statistically significant. Importantly, however, patients taking idebenone were protected from further vision loss, whereas the placebo group had a steady decline in visual acuity. Further, individuals taking idebenone demonstrated preservation of color vision and persistence of the effects of idebenone 30 months after discontinuing therapy. A retrospective analysis of 103 LHON patients by Carelli et al. builds upon these results. This study highlighted that 44 subjects who were treated with idebenone within one year of onset of vision loss had better outcomes, and, further, that these improvements with idebenone persisted for years.
Idebenone, combined with avoidance of smoke and limitation of alcohol intake, is the preferred standard treatment protocol for patients affected by LHON. Idebenone doses are prescribed to be taken spaced out throughout the day, rather than all at one time. For example, to achieve a dose of 900 mg per day, patients take 300 mg three times daily with meals. Idebenone is fat soluble, and may be taken with a moderate amount of dietary fat in each meal to promote absorption. It is recommended that patients on idebenone also take vitamin C 500 mg daily to keep idebenone in its reduced form, as it is most active in this state.
TCAs include imipramine, amitriptyline, desipramine, and nortriptyline. They are generally regarded as first or second-line treatment for DPN. Of the TCAs, imipramine has been the best studied. These medications are effective at decreasing painful symptoms but suffer from multiple side effects that are dose-dependent. One notable side effect is cardiac toxicity, which can lead to fatal abnormal heart rhythms. Additional common side effects include dry mouth, difficulty sleeping, and sedation. At low dosages used for neuropathy, toxicity is rare, but if symptoms warrant higher doses, complications are more common. Among the TCAs, amitriptyline is most widely used for this condition, but desipramine and nortriptyline have fewer side effects.
Typical opioid medications, such as oxycodone, appear to be no more effective than placebo. In contrast, low-quality evidence supports a moderate benefit from the use of atypical opioids (e.g., tramadol and tapentadol), which also have SNRI properties. Opioid medications are recommended as second or third-line treatment for DPN.
The treatment and management of radial neuropathy can be achieved via the following methods:
- Physical therapy or occupational therapy
- Surgery(depending on the specific area and extent of damage)
- Splinting
When an underlying medical condition is causing the neuropathy, treatment should first be directed at this condition. For example, if weight gain is the underlying cause, then a weight loss program is the most appropriate treatment. Compression neuropathy occurring in pregnancy often resolves after delivery, so no specific treatment is usually required. Some compression neuropathies are amenable to surgery: carpal tunnel syndrome and cubital tunnel syndrome are two common examples. Whether or not it is appropriate to offer surgery in any particular case depends on the severity of the symptoms, the risks of the proposed operation, and the prognosis if untreated. After surgery, the symptoms may resolve completely, but if the compression was sufficiently severe or prolonged then the nerve may not recover fully and some symptoms may persist. Drug treatment may be useful for an underlying condition (including peripheral oedema), or for ameliorating neuropathic pain.
Practical surgical procedures used for treating synkinesis are neurolysis and selective myectomy. Neurolysis has been shown to be effective in relieving synkinesis but only temporarily and unfortunately symptoms return much worse than originally. Selective myectomy, in which a synkinetic muscle is selectively resected, is a much more effective technique that can provide permanent relief and results in a low recurrence rate; unfortunately, it also has many post-operative complications that can accompany including edema, hematoma, and ecchymosis. Therefore, surgical procedures are very minimally used by doctors and are used only as last-resort options for patients who do not respond well to non-invasive treatments.
Botox (botulinum toxin) is a new and versatile tool for the treatment of synkinesis. Initially used for reducing hyperkinesis after facial palsy, Botox was later attempted on patients with post-facial palsy synkinesis to reduce unwanted movements. The effects of Botox have shown to be remarkable, with synkinetic symptoms disappearing within 2 or 3 days. The most common treatment targets are the orbicularis oculi, depressor anguli oris (DAO), mentalis, platysma and the contralateral depressor labii inferioris muscles. Due to the short span of Botox effects though, patients must come back to the doctor for re-injection approximately every 3 months. More notable is that in a majority of patients, various synkinetic movements completely disappeared after 2-3 sessions of trimonthly Botox injections.
A more specific synkinesis, crocodile tears syndrome (hyperlacrimation upon eating), has been shown to respond exceedingly well to Botox injection. Botox is injected directly into the lacrimal gland and has shown to reduce hyperlacrimation within 24–48 hours. The procedure was shown to be simple and safe with very little chance of side-effects (although on rare occasions ptosis can occur due to botulinum toxin diffusion). Furthermore, reduction in hyper-lacrimation was shown to last longer than the expected 3 months (about 12 months).
Since Botox can mimic facial paralysis, an optimized dose has been determined that reduces involuntary synkinesis of the muscle while not affecting muscle tone.
Painful dysesthesias caused by alcoholic polyneuropathy can be treated by using gabapentin or amitriptyline in combination with over-the-counter pain medications, such as aspirin, ibuprofen, or acetaminophen. Tricyclic antidepressants such as amitriptyline, or carbamazepine may help stabbing pains and have central and peripheral anticholinergic and sedative effects. These agents have central effects on pain transmission and block the active reuptake of norepinephrine and serotonin.
Anticonvulsant drugs like gabapentin block the active reuptake of norepinephrine and serotonin and have properties that relieve neuropathic pain. However, these drugs take a few weeks to become effective and are rarely used in the treatment of acute pain.
Topical analgesics like capsaicin may also relieve minor aches and pains of muscles and joints.
Proper management of diabetes mellitus can prevent proximal diabetic neuropathy from ever occurring.
The incidence of proximal diabetic neuropathy incidence is thought to be correlated to blood glucose control in diabetics, and is likely reversible with better control.
Medication helps reduce the pain involved in proximal diabetic neuropathy. Most patients take oral medication that is prescribed by a doctor. Common types of medication used to treat diabetic amyotrophy include anticonvulsives (e.g. gabapentin, pregabalin) as well as opioid medications, although the latter category is not optimally indicated for neuropathic pain.
Treatment for ulnar neuropathy can entail:
NSAID (non-steroidal anti-inflammatory) medicines. there is also the option of cortisone. Another possible option is splinting, to secure elbow, a conservative procedure endorsed by some. In cases where surgery is needed, cubital tunnel release, where the ligament of the cubital tunnel is cut, thereby alleviating pressure on nerve can be performed.
Treatment for the common occurrence of ulnar neuropathy resulting from overuse, with no fractures or structural abnormalities, is treatment massage, ice, and anti-inflammatories. Specifically, deep tissue massage to the triceps, myofascial release for the upper arm connective tissue, and cross-fiber friction to the triceps tendon.
In terms of prognosis radial neuropathy is not necessarily permanent, though sometimes there could be partial loss of movement/sensation.Complications may be possible deformity of the hand in some individuals.
If the injury is axonal (the underlying nerve fiber itself is damaged) then full recovery may take months or years ( or could be permanent). EMG and nerve conduction studies are typically performed to diagnose the extent and distribution of the damage, and to help with prognosis for recovery.
To best manage symptoms, refraining from consuming alcohol is essential. Abstinence from alcohol encourages proper diet and helps prevent progression or recurrence of the neuropathy. Once an individual stops consuming alcohol it is important to make sure they understand that substantial recovery usually isn't seen for a few months. Some subjective improvement may appear right away, but this is usually due to the overall benefits of alcohol detoxification. If alcohol consumption continues, vitamin supplementation alone is not enough to improve the symptoms of most individuals.
Nutritional therapy with parenteral multivitamins is beneficial to implement until the person can maintain adequate nutritional intake. Treatments also include vitamin supplementation (especially thiamine). In more severe cases of nutritional deficiency 320 mg/day of benfotiamine for 4 weeks followed by 120 mg/day for 4 more weeks may be prescribed in an effort to return thiamine levels to normal.
AON is a rare disease and the natural history of the disease process is not well defined. Unlike typical optic neuritis, there is no association with multiple sclerosis, but the visual prognosis for AON is worse than typical optic neuritis. Thus AON patients have different treatment, and often receive chronic immunosuppression. No formal recommendation can be made regarding the best therapeutic approach. However, the available evidence to date supports treatment with corticosteroids and other immunosuppressive agents.
Early diagnosis and prompt treatment with systemic corticosteroids may restore some visual function but the patient may remain steroid dependent; vision often worsens when corticosteroids are tapered. As such, long-term steroid-sparing immunosuppressive agents may be required to limit the side-effects of steroids and minimize the risk of worsening vision.